首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets
【24h】

Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets

机译:提高大型数据集的最佳路径森林监督分类器的准确性

获取原文
获取原文并翻译 | 示例

摘要

In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OPF while still gaining in classification time, at the expense of a slight increase in training time.
机译:在这项工作中,提出了一种新的监督模式识别方法,该方法改进了“最优路径森林分类器”(OPF)的学习算法,其重点是检测和消除训练集中的异常值。离群值的识别基于对训练集中每个样本的惩罚,该惩罚是根据样本的可归因的假阳性和假阴性分类的相应数量计算的。这种方法提高了OPF的准确性,同时仍然增加了分类时间,但以稍微增加了训练时间为代价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号