首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Pigmented Skin Lesions Classification Using Dermatoscopic Images
【24h】

Pigmented Skin Lesions Classification Using Dermatoscopic Images

机译:使用皮肤镜图像对色素性皮肤病变进行分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose a machine learning approach to classify melanocytic lesions in malignant and benign from dermatoscopic images. The image database is composed of 433 benign lesions and 80 malignant melanoma. After an image pre-processing stage that includes hair removal filtering, each image is automatically segmented using well known image segmentation algorithms. Then, each lesion is characterized by a feature vector that contains shape, color and texture information, as well as local and global parameters that try to reflect structures used in medical diagnosis. The learning and classification stage is performed using AdaBoost.M1 with C4.5 decision trees. For the automatically segmented database, classification delivered a false positive rate of 8.75% for a sensitivity of 95%. The same classification procedure applied to manually segmented images by an experienced dermatologist yielded a false positive rate of 4.62% for a sensitivity of 95%.
机译:在本文中,我们提出了一种机器学习方法,可根据皮肤镜图像对恶性和良性黑素细胞病变进行分类。图像数据库由433个良性病变和80个恶性黑色素瘤组成。在包括脱毛过滤的图像预处理阶段之后,使用众所周知的图像分割算法自动分割每个图像。然后,每个病变的特征是一个特征向量,该特征向量包含形状,颜色和纹理信息,以及试图反映医学诊断中使用的结构的局部和全局参数。使用带有C4.5决策树的AdaBoost.M1执行学习和分类阶段。对于自动分段的数据库,分类的假阳性率为8.75%,敏感度为95%。由经验丰富的皮肤科医生应用于手动分割图像的相同分类程序产生的假阳性率为4.62%,灵敏度为95%。

著录项

  • 来源
  • 会议地点 Guadalajara Jalisco(MX);Guadalajara Jalisco(MX)
  • 作者单位

    Departamento de Procesamiento de Senales, Instituto de Ingenieria Electrica,Facultad de Ingenieria, Universidad de la Republica, Uruguay;

    rnDepartamento de Procesamiento de Senales, Instituto de Ingenieria Electrica,Facultad de Ingenieria, Universidad de la Republica, Uruguay;

    rnUnidad de Lesiones Pigmentadas, Catedra de Dermatologia, Hospital de Clinicas,Facultad de Medicina, Universidad de la Republica, Uruguay;

    rnDepartamento de Procesamiento de Senales, Instituto de Ingenieria Electrica,Facultad de Ingenieria, Universidad de la Republica, Uruguay;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 信息处理(信息加工);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号