首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >A Combine-Correct-Combine Scheme for Optimizing Dissimilarity-Based Classifiers
【24h】

A Combine-Correct-Combine Scheme for Optimizing Dissimilarity-Based Classifiers

机译:一种优化基于相似度的分类器的合并-合并-合并方案

获取原文
获取原文并翻译 | 示例

摘要

Recently, to increase the classification accuracy of dissimilarity-based classifications (DBCs), Kim and Duin [5] proposed a method of simultaneously employing fusion strategies in representing features (representation step) as well as in designing classifiers (generalization step). In this multiple fusion strategies, however, the resulting dissimilarity matrix is sometimes an indefinite one, causing problems in using the traditional pattern recognition tools after embedding the matrix in a vector space. To overcome this problem, we study a new way, named combine-correct-combine (CCC) scheme, of additionally employing an Euclidean correction procedure between the two steps. In CCC scheme, we first combine dissimilarity matrices obtained with different measures to a new dissimilarity representation using a representation combining strategy. Next, we correct the dissimilarity matrix using a pseudo-Euclidean embedding algorithm to improve the internal consistency of the matrix. After that, we again utilize the classifier combining strategies in the refined dissimilarity matrix to achieve an improved classification for a given data set. Our experimental results for well-known benchmark databases demonstrate that the CCC mechanism works well and achieves further improved results in terms of the classification accuracy compared with the previous multiple fusion approaches. The results especially demonstrate that the highest accuracies are obtained when the refined representation is classified with the trained combiners.
机译:最近,为了提高基于差异的分类(DBC)的分类准确性,Kim和Duin [5]提出了一种在表示特征(表示步骤)以及设计分类器(泛化步骤)时同时采用融合策略的方法。然而,在这种多种融合策略中,所得的相异性矩阵有时是不确定的,在将矩阵嵌入向量空间后,在使用传统模式识别工具时会出现问题。为了克服这个问题,我们研究了一种称为合并校正组合(CCC)方案的新方法,该方法在两个步骤之间另外采用了欧几里德校正程序。在CCC方案中,我们首先使用表示组合策略将通过不同度量获得的相异性矩阵组合为新的相异性表示。接下来,我们使用伪欧几里德嵌入算法校正相异度矩阵,以提高矩阵的内部一致性。此后,我们再次在改进的相异性矩阵中利用分类器组合策略,以针对给定的数据集实现改进的分类。我们针对知名基准数据库的实验结果表明,与以前的多种融合方法相比,CCC机制运作良好,并且在分类准确性方面取得了进一步改善的结果。结果特别表明,当用经过训练的合并器对精细表示进行分类时,可以获得最高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号