首页> 外文会议>Progress in pattern recognition, image analysis, computer vision, and applications >Randomized Probabilistic Latent Semantic Analysis for Scene Recognition
【24h】

Randomized Probabilistic Latent Semantic Analysis for Scene Recognition

机译:场景识别的随机概率潜在语义分析

获取原文
获取原文并翻译 | 示例

摘要

The concept of probabilistic Latent Semantic Analysis (pLSA) has gained much interest as a tool for feature transformation in image categorization and scene recognition scenarios. However, a major issue of this technique is overfitting. Therefore, we propose to use an ensemble of pLSA models which are trained using random fractions of the training data. We analyze empirically the influence of the degree of randomization and the size of the ensemble on the overall classification performance of a scene recognition task. A thoughtful evaluation shows the benefits of this approach compared to a single pLSA model.
机译:作为图像分类和场景识别场景中的特征转换工具,概率潜在语义分析(pLSA)的概念引起了广泛的兴趣。但是,此技术的主要问题是过拟合。因此,我们建议使用一组pLSA模型,该模型使用训练数据的随机分数进行训练。我们根据经验分析了随机化程度和整体大小对场景识别任务总体分类性能的影响。经过深思熟虑的评估表明,与单个pLSA模型相比,该方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号