首页> 外文会议>Programs, proofs, processes >Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program
【24h】

Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program

机译:量子场论和经典计算中的无穷:重整化程序

获取原文
获取原文并翻译 | 示例

摘要

The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere denned due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].
机译:量子场论中的主要可观测量,相关函数由著名的费曼路径积分表示。仍然缺乏对涉及度量和实际集成的数学定义。取而代之的是,它被一系列临时但高效且具有启发性的启发式公式(例如,扰动形式主义)代替。后者将这种积分解释为有限维但发散积分的形式系列,并由Feynman图索引,其列表由该理论的拉格朗日确定。重新规范化是一种处方,可以使人们从这些发散项中系统地“减去无穷大”,从而为量子相关函数产生一个渐近级数。另一方面,被视为“流程图”的图也形成了抽象计算理论的组合框架。根据丘奇的论文,部分递归函数耗尽了(半)可计算图的范围,但由于潜在的无限搜索和循环,所以并非到处都没有定义。在本文中,我认为可以用费曼散度的相同方法来解决这种无限性。更多细节可以在[9,10]中找到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号