首页> 外文会议>Programming languages and systems >Bisimulation Proof Methods in a Path-Based Specification Language for Polynomial Coalgebras
【24h】

Bisimulation Proof Methods in a Path-Based Specification Language for Polynomial Coalgebras

机译:多项式代数的基于路径的规范语言中的双仿真证明方法

获取原文
获取原文并翻译 | 示例

摘要

Bisimulation is one of the fundamental concepts of the theory of coalgebras. However, it is difficult to verify whether a relation is a bisimulation. Although some categorical bisimulation proof methods for coalgebras have been proposed, they are not based on specification languages of coalgebras so that they are difficult to be used in practice. In this paper, a specification language based on paths of polynomial functors is proposed to specify polynomial coalgebras. Since bisimulation can be defined by paths, it is easy to transform Sangiorgi's bisimulation proof methods for labeled transition systems to reasoning rules in such a path-based specification language for polynomial coalgebras. The paper defines the notions of progressions and sound functions based on paths, then introduces the notion of faithful contexts for the language and presents a bisimulation-up-to context proof technique for polynomial coalgebras. Several examples are given to illustrate how to make use of the bisimulation proof methods in the language.
机译:双仿真是合子理论的基本概念之一。但是,很难验证关系是否为双仿真。尽管已经提出了一些关于代数的分类双模拟证明方法,但是它们不是基于代数的规范语言的,因此很难在实践中使用。在本文中,提出了一种基于多项式函子路径的规范语言来指定多项式的代数。由于可以通过路径定义双仿真,因此很容易将Sangiorgi的用于标记过渡系统的双仿真证明方法转换为这种基于路径的多项式代数规范语言的推理规则。本文定义了基于路径的渐进和声音功能的概念,然后介绍了语言的忠实上下文的概念,并提出了多项模拟直至上下文证明多项式合并代数的技术。给出了几个例子来说明如何使用语言中的双仿真证明方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号