首页> 外文会议>Prognostics and System Health Management Conference >Three-Stage Method for Rotating Machine Health Condition Monitoring Using Vibration Signals
【24h】

Three-Stage Method for Rotating Machine Health Condition Monitoring Using Vibration Signals

机译:振动信号监测旋转机械健康状况的三阶段方法

获取原文

摘要

This paper proposes a new three-stage method for rotating machines health condition monitoring. In the first stage of the proposed method, Multiple Measurement Vectors Compressive Sampling (MMV-CS) is used to obtain compressively-sampled signals from the acquired raw vibration signals. In the second stage, a process combining Geodesic Minimal Spanning Tree (GMST), Stochastic Proximity Embedding (SPE), and Neighbourhood Component Analysis (NCA) is used to estimate and further reduce the dimensionality of the compressively-sampled signals. In the third stage, with these reduced features, multi-class Support Vector Machine (SVM) classifier is used to classify machine health conditions. Experiments on a roller element bearing fault detection and classification task based on vibration signals are used to verify the efficiency of the proposed method. Results show that the proposed method with fewer features achieved high classification accuracy of bearings health conditions and outperformed recently published results.
机译:本文提出了一种新的三阶段旋转机械健康状态监测方法。在提出的方法的第一阶段,使用多个测量矢量压缩采样(MMV-CS)从获取的原始振动信号中获取压缩采样的信号。在第二阶段,结合了测地线最小生成树(GMST),随机邻近嵌入(SPE)和邻域分量分析(NCA)的过程来估计并进一步降低压缩采样信号的维数。在第三阶段,通过减少这些功能,使用多类支持向量机(SVM)分类器对机器运行状况进行分类。通过对基于振动信号的滚动轴承故障检测与分类任务的实验,验证了该方法的有效性。结果表明,该方法具有较少的特征,可以实现较高的轴承健康状况分类精度,并且优于最近发表的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号