【24h】

A Neural Network Approach to Load Identification on a Wing Rib

机译:翼肋载荷识别的神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

Monitoring of in-service flight loads on aircraft structures has become a safety measure used in developing a better understanding of the aircraft behaviour during real time flight operation. However the increase in the complexity of these structures increases the difficulty in obtaining accurate and acceptable data for flight parameters. The use of advanced mathematical techniques (i.e. artificial neural networks - ANNs) to accurately predict the load on these structures based on measured parameters have proven to be of great advantage. The ANN is a powerful machine learning tool which has the capacity to predict the relationship between variables through an adaptive learning process. In this paper, a method for predicting the static load applied across an aluminium plate is presented and the method is based on a combination of the finite element method and ANNs. The finite element model of the plate was calibrated using ANN trained data generated from a static test. Finally, the results indicate that this technique can provide load identification across a structure once the load-response relationship of the structure has been identified from the ANN training.
机译:监视飞机结构上的飞行中飞行负载已成为一种安全措施,用于更好地了解实时飞行操作过程中的飞机行为。然而,这些结构的复杂性的增加增加了获得飞行参数的准确且可接受的数据的难度。事实证明,使用先进的数学技术(即人工神经网络-ANN)来基于测得的参数准确预测这些结构上的载荷是非常有利的。 ANN是功能强大的机器学习工具,它具有通过自适应学习过程预测变量之间关系的能力。本文提出了一种预测施加在铝板上的静载荷的方法,该方法基于有限元方法和人工神经网络的结合。使用从静态测试生成的ANN训练数据来校准板的有限元模型。最后,结果表明,一旦已经从ANN训练中识别出结构的荷载-响应关系,该技术就可以提供跨结构的荷载识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号