首页> 外文会议>Proceedings of the 20th European Signal Processing Conference. >Distributed estimation of statistical correlation measures for spatial inference in WSNs
【24h】

Distributed estimation of statistical correlation measures for spatial inference in WSNs

机译:WSN中用于空间推断的统计相关性度量的分布式估计

获取原文
获取原文并翻译 | 示例

摘要

This work shows how to obtain distributively important statistical measures such as the semivariogram and the covariogram in a Wireless Sensor Network. These statistics describe the spatial dependence of the sensed area and allow making inferences about unknown field data. In practice, these are complex measures that require global knowledge such as the distance between every pair of nodes, which is not available in a distributed scenario. Then, motivated by the distributed nature of a Wireless Sensor Network and the requirement of making estimations in many real applications, we propose a distributed method to obtain an approximation of these measures, based only on the local samples of the nodes. Our method only requires knowing, at each node, the geographic position of its neighbors. Additionally, we show that introducing random movements of the nodes, the quality of the results can be improved. Simulation results are presented to evaluate the performance of our algorithm.
机译:这项工作显示了如何在无线传感器网络中获得重要的统计量度,例如半变异函数和协变异函数。这些统计数据描述了感测区域的空间依赖性,并允许对未知的场数据进行推断。实际上,这些是复杂的度量,需要全局知识,例如每对节点之间的距离,这在分布式方案中不可用。然后,受无线传感器网络的分布式性质以及在许多实际应用中进行估计的需求的启发,我们提出了一种仅基于节点的本地样本来获得这些度量的近似值的分布式方法。我们的方法仅需要在每个节点上知道其邻居的地理位置。此外,我们表明引入节点的随机运动可以提高结果的质量。仿真结果被提出来评估我们算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号