首页> 外文会议>Proceedings of the 2016 ACM information hiding and multimedia security workshop >Color Image Steganalysis Based on Steerable Gaussian Filters Bank
【24h】

Color Image Steganalysis Based on Steerable Gaussian Filters Bank

机译:基于可控高斯滤波器组的彩色图像隐写

获取原文
获取原文并翻译 | 示例

摘要

This article deals with color images steganalysis based on machine learning. The proposed approach enriches the features from the Color Rich Model by adding new features obtained by applying steerable Gaussian filters and then computing the co-occurrence of pixel pairs. Adding these new features to those obtained from Color-Rich Models allows us to increase the detectability of hidden messages in color images. The Gaussian filters are angled in different directions to precisely compute the tangent of the gradient vector. Then, the gradient magnitude and the derivative of this tangent direction are estimated. This refined method of estimation enables us to unearth the minor changes that have occurred in the image when a message is embedded. The efficiency of the proposed framework is demonstrated on three stenographic algorithms designed to hide messages in images: S-UNIWARD, WOW, and Synch-HILL. Each algorithm is tested using different payload sizes. The proposed approach is compared to three color image steganalysis methods based on computation features and Ensemble Classifier classification: the Spatial Color Rich Model, the CFA-aware Rich Model and the RGB Geometric Color Rich Model.
机译:本文讨论基于机器学习的彩色图像隐写分析。所提出的方法通过添加通过应用可操纵的高斯滤波器获得的新特征,然后计算像素对的共现,丰富了色彩丰富模型的特征。将这些新功能添加到从“色彩丰富的模型”中获得的功能之后,我们可以提高彩色图像中隐藏消息的可检测性。高斯滤波器沿不同方向倾斜以精确计算梯度向量的切线。然后,估计梯度大小和该切线方向的导数。这种完善的估算方法使我们能够发掘嵌入消息时图像中发生的微小变化。在三种用于隐藏图像中消息的速记算法上证明了所提出框架的效率:S-UNIWARD,WOW和Synch-HILL。使用不同的有效负载大小测试每种算法。将该方法与基于计算功能和Ensemble分类器分类的三种彩色图像隐写分析方法进行了比较:空间色彩丰富模型,CFA感知丰富模型和RGB几何色彩丰富模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号