首页> 外文会议>Practical knowledge, worldly wisdom amp; extraordinary ingenuity >Artificial Neural Networks Methods to Analysis of Ultrasonic Testing in Concrete
【24h】

Artificial Neural Networks Methods to Analysis of Ultrasonic Testing in Concrete

机译:混凝土超声检测分析的人工神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

Nondestructive testing (NDT) techniques are useful tools for analyzing reinforced concrete structures. The use of ultrasonic pulse velocity (UPV) measurements enables the monitoring of changes in some critical characteristics of concrete over the service life of a structure. The interpretation of the data collected allows an assessment of concrete uniformity, and can be used to perform quality control, to monitor deterioration and even, by means of comparison against reference samples, to estimate compressive strength. Nonetheless, the current techniques for UPV data analysis are, on a large degree, based on the sensitivity of the professionals who apply these tests. For accurate diagnosis it is necessary to consider the various factors and conditions that can affect the results. To proper control and inspect RC facilities it is essential to develop appropriate strategies to make the task of data interpretation easier and more accurate. This work is based on the notion that using Artificial Neural Networks (ANN) is a feasible way to generate workable estimation models correlating concrete characteristics, compacity and compressive strength. The goal is to determine if it is possible to establish models based on non-linear relationships that are capable of estimating with good accuracy the concrete strength based on previous knowledge of some basic material characteristics and UPV measurements. The study shows that this goal is achievable and indicates that neural models perform better than traditional statistical models. For the data collected in this work, provided by various researchers, traditional regression models cannot exceed R~2 = 0.40, while the use of ANNs allows the creation of models that can reach a determination coefficient R~2 = 0.90. The results make clear that, besides contributing to better the analysis of situations where there is doubts regarding concrete strength or uniformity, neural models are an efficient way to order and transfer unstructured knowledge. It was shown that, given the learning capacity and its ability to generalize acquired information into mathematical patterns, ANNs are a quick and adequate way to model complex phenomena.
机译:无损检测(NDT)技术是分析钢筋混凝土结构的有用工具。超声脉冲速度(UPV)测量的使用可以监视结构使用寿命内混凝土某些关键特性的变化。对收集到的数据的解释可以评估混凝土的均匀性,并且可以用于执行质量控制,监视变质,甚至可以通过与参考样品进行比较来估计抗压强度。尽管如此,目前用于UPV数据分析的技术在很大程度上取决于应用这些测试的专业人员的敏感性。为了进行准确的诊断,有必要考虑可能影响结果的各种因素和条件。为了适当地控制和检查RC设施,必须制定适当的策略以使数据解释的任务更容易,更准确。这项工作基于以下观念,即使用人工神经网络(ANN)是生成与混凝土特性,相容性和抗压强度相关的可行估算模型的可行方法。目的是确定是否有可能基于非线性关系建立模型,这些模型能够基于一些基本材料特性和UPV测量的先前知识,以较高的准确度估算混凝土强度。研究表明,这一目标是可以实现的,并且表明神经模型的性能要优于传统的统计模型。对于由不同研究人员提供的这项工作中收集的数据,传统回归模型不能超过R〜2 = 0.40,而使用ANN可以创建可以达到确定系数R〜2 = 0.90的模型。结果表明,除了有助于更好地分析对混凝土强度或均匀性存在疑问的情况外,神经模型是一种有效的整理和转移非结构化知识的方法。结果表明,考虑到学习能力及其将获得的信息概括成数学模式的能力,人工神经网络是对复杂现象进行建模的一种快速而适当的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号