【24h】

An Efficient Profile-Analysis Framework for Data-Layout Optimizations

机译:用于数据布局优化的有效配置文件分析框架

获取原文
获取原文并翻译 | 示例

摘要

Data-layout optimizations rearrange fields within objects, objects within objects, and objects within the heap, with the goal of increasing spatial locality. While the importance of data-layout optimizations has been growing, their deployment has been limited, partly because they lack a unifying framework. We propose a parameterizable framework for data-layout optimization of general-purpose applications. Acknowledging that finding an optimal layout is not only NP-hard, but also poorly approximable, our framework finds a good layout by searching the space of possible layouts, with the help of profile feedback. The search process iteratively prototypes candidate data layouts, evaluating them by "simulating" the program on a representative trace of memory accesses. To make the search process practical, we develop space-reduction heuristics and optimize the expensive simulation via memoization. Equipped with this iterative approach, we can synthesize layouts that outperform existing non-iterative heuristics, tune application-specific memory allocators, as well as compose multiple data-layout optimizations.
机译:数据布局优化重新排列对象内的对象,对象内的对象以及堆中的对象,以增加空间局部性。尽管数据布局优化的重要性日益增长,但其部署受到了限制,部分原因是它们缺乏统一的框架。我们提出了一个可参数化的框架,用于通用应用程序的数据布局优化。认识到找到最佳布局不仅困难,而且近似性很差,我们的框架在配置文件反馈的帮助下,通过搜索可能布局的空间来找到一个好的布局。搜索过程迭代地原型化候选数据布局,并通过在内存访问的代表性轨迹上“模拟”程序来评估它们。为了使搜索过程切实可行,我们开发了减少空间的启发式方法,并通过记忆优化了昂贵的模拟。有了这种迭代方法,我们可以合成优于现有非迭代试探法的布局,调整应用程序专用的内存分配器,以及组合多个数据布局优化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号