首页> 外文会议>Plasmonics: Metallic nanostructures and their optical properties X. >Large-area Ag nanoparticle arrays for plasmonically enhanced Raman scattering
【24h】

Large-area Ag nanoparticle arrays for plasmonically enhanced Raman scattering

机译:用于等离子体增强拉曼散射的大面积Ag纳米颗粒阵列

获取原文
获取原文并翻译 | 示例

摘要

Conducting nanoparticles with plasmon resonances create local, nanoscopic field enhancements that boost an analytemolecule’s surface-averaged Raman scattering cross-section orders of magnitude above the bulk Raman cross-section by an amount known as the enhancement factor (EF). Demonstrations of single-molecule sensitivity with EF ~ 1013 have been reported from small “hot spots” (e.g., regions of enhanced electromagnetic near fields) on specialized substrates, but realistic chemical sensing requires high average EF over large substrates for practical sampling.1 By using simple wet chemical methods, NSRDEC scientists have fabricated large-area arrays of novel, highly conducting, anisotropic Ag and Al nanoparticles. The nanoparticles adhere to an ultrathin layer of poly-4(vinyl pyridine), and are anchored by submicron coating of poly-methyl methacrylate on glass and SiO2-coated Si substrates. The average interparticle spacing is determined by the dilution of the nanoparticle-water suspension. We present surface-enhanced Raman spectroscopy (SERS), spectrophotometry, and microscopy data from these nanoparticle arrays, model this data and the nanoscopic field enhancement, and determine the SERS EF. We compare the observed absorption resonances and SERS EF with those predicted by finite difference time domain modeling of the nanoscale fields and optical properties, and find good agreement between measured and calculated reflectivity, achieving EF ~ 106 for benzenethiol adsorbed onto a monolayer array of 120 nm Ag nanoparticles over an area of ~ 0.5 cm2. We discuss a way forward to increase SERS EF to 107 with large-area samples assembled using chemical methods, by using spiky Ag “nano-urchins” with very large predicted field enhancements.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:具有等离振子共振的导电纳米粒子可产生局部的,纳米级的电场增强作用,从而使分析物分子的表面平均拉曼散射截面比本体拉曼截面高出几个数量级,即所谓的增强因子(EF)。 EF〜1013的单分子敏感性已被证明是从特殊基质上的小“热点”(例如,增强的电磁近场区域)展示出来的,但现实的化学传感需要在大型基质上实现较高的平均EF才能进行实际采样。 NSRDEC的科学家使用简单的湿化学方法制造了大面积的新型,高导电性,各向异性的Ag和Al纳米粒子阵列。纳米粒子粘附到聚-4(乙烯基吡啶)的超薄层上,并通过在玻璃和SiO2涂层的Si基板上的聚甲基丙烯酸甲酯亚微米涂层固定。平均粒子间距是通过稀释纳米粒子-水悬浮液来确定的。我们提出了来自这些纳米粒子阵列的表面增强拉曼光谱(SERS),分光光度法和显微镜数据,对这些数据进行建模并在纳米视野下增强,并确定了SERS EF。我们将观察到的吸收共振和SERS EF与通过纳米场和光学特性的时域有限差分时域预测所预测的吸收共振和SERS EF进行了比较,发现测量的反射率与计算的反射率之间具有良好的一致性,对于吸附在120 nm单层阵列上的苯硫酚,其EF〜106银纳米粒子的面积约为0.5平方厘米。我们讨论了一种使用化学方法组装的大面积样品的方法,即通过使用带有尖峰的Ag“纳米顽皮”并具有非常大的预测场增强,将SERS EF增加到107。©(2012)COPYRIGHT光电仪器工程师协会( SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号