首页> 外文学位 >Coupled plasmonics for tip enhanced Raman scattering and understanding of quantum effects in plasmonic junctions
【24h】

Coupled plasmonics for tip enhanced Raman scattering and understanding of quantum effects in plasmonic junctions

机译:用于尖端增强拉曼散射的耦合等离子体激元和对等离子体激元结中量子效应的理解

获取原文
获取原文并翻译 | 示例

摘要

Over the past few decades, plasmonics has emerged as a technology that spans across several fields including laser spectroscopy, material science and solid-state physics. The near-field coupling between light and the surface plasmons of metal nanostructures has transformed single-molecule detection and imaging, tracking of chemical reactions and boosting catalytic efficiencies. Surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), by taking advantage of the enormous field enhancements arising from the excitation of the localized surface-plasmon resonances (LSPR), have both shown great potential in ultra-sensitive detection. In this dissertation, we focus on the effect of coupled plasmonics in TERS for the detection and nanoscale imaging of biologically relevant molecules such as proteins, in a non-invasive, label-free and selective manner. The other aspect of this dissertation will be devoted to the effect of quantum tunneling in ultra-small plasmonic nano-junctions, as evidenced by its gap plasmon shifts and time-dependent spectral changes.;The thesis will begin with an introduction to coupled plasmonics: reviewing the related backgrounds of plasmonics & plasmonic coupling, a topic of close relevance to the research conducted in this thesis, after which a brief description of SERS and TERS will be given. This will then be followed by the introduction of VSE and its applications in determining local electric fields in various environments. A short survey of literatures that report the quantum effect (electron tunneling) as observed in plasmonic gaps and will be presented at the end of the introduction. The results of the dissertation research can be categorized into two major parts:;Part I is associated with implementing and understanding of the TERS system. TERS, unlike SERS, does not rely on the uncontrollable nanoparticle aggregation for signal enhancement, but uses an illuminated metallic sharp tip to provide additional control (using AFM or STM) over the positioning of the enhanced plasmonic fields. Unfortunately, the field enhancement from a single metal nanoparticle tip is often not enough for detecting Raman signals of most non-resonant molecules. To overcome this, most recent TERS studies resort to plasmonic coupling between the sharp metal tip and a smooth metal film ('gap mode'), creating a nanometer sized cavity in between the gap where the field enhancement is orders of magnitude higher than that of a single metallic tip. So far, gap mode TERS has had great success in the detection and imaging of small molecules. In ideal conditions, sub-molecular resolution has been reported. However, for larger molecules such as lipids, proteins or molecules that cannot be easily transferred to a metal film, 'gap mode' TERS is difficult to implement. Striving to solve this problem, we coupled a sharp metal tip with an addressable nanoparticle probe (functionalized nanoparticles) to achieve both higher signal enhancement and chemical specificity at the same time. We found that by coupling the Au-ball AFM tip to a metal nanoparticle (AuNP) bound to a protein-coated surface can result in Raman signals of the proteins underneath the bound nanoparticle (Chapter 2). In light of this result, we further extended this technique to imaging integrin receptors on fixed cells using cyclic RGD ligand functionalized AuNPs (Chapter 3) and tested the capability of this method in differentiating different mutant variants from the wild-type streptavidin (Chapter 4).;Part II of the thesis reports an electron tunneling effect in sub-nanometer plasmonic junctions as evidenced by the plasmon resonance shifts and nitrile peak shifts observed experimentally (Chapter 5). The electron tunneling effect and non-local effect in plasmonic gaps have been theoretically predicted and experimentally observed to cause blue shifting and broadening of the coupled plasmon mode. This effect can ultimately lead to reduction of the local electric fields due to charge screening when the conductivity becomes large enough. Experimentally the vibrational stark effect (VSE) is reported to monitor local electric fields through stark shifts in specific vibrational modes. Here, we use VSE as a molecular voltmeter to track the changes in nitrile normal modes as the gap size of the nanoparticle-on-mirror (NPoM) junction is modulated from nanometer to sub-nanometer regimes and show that subtle changes in the local electric fields can be related to electron tunneling as confirmed by a blue shift in dark-field scattering.
机译:在过去的几十年中,等离子技术已经成为一种跨越多个领域的技术,包括激光光谱学,材料科学和固态物理学。光与金属纳米结构的表面等离激元之间的近场耦合已经改变了单分子检测和成像,跟踪化学反应并提高了催化效率。表面增强拉曼光谱(SERS)和尖端增强拉曼光谱(TERS)通过利用局部表面等离子体共振(LSPR)激发而产生的巨大场增强特性,在超灵敏领域均显示出巨大潜力检测。在本文中,我们专注于耦合等离子体激元在TERS中以无创,无标记和选择性的方式检测和相关生物分子(如蛋白质)的纳米级成像的作用。本文的另一个方面将致力于量子隧穿在超小型等离子体纳米结中的作用,这由其间隙等离子体激元位移和随时间变化的光谱变化所证明。论文将首先介绍耦合等离子体。回顾了等离子体和等离子体耦合的相关背景,这是与本论文研究密切相关的一个话题,之后将对SERS和TERS进行简要描述。然后,将介绍VSE及其在确定各种环境中的局部电场中的应用。简短的文献调查报告了在等离激元间隙中观察到的量子效应(电子隧穿),并将在导论末尾进行介绍。论文的研究结果可分为两个主要部分:第一部分与TERS系统的实施和理解有关。与SERS不同,TERS不依赖不可控制的纳米粒子聚集来增强信号,而是使用发光的金属尖头对增强的等离激元场的定位进行其他控制(使用AFM或STM)。不幸的是,来自单个金属纳米粒子尖端的场增强通常不足以检测大多数非共振分子的拉曼信号。为了克服这个问题,最新的TERS研究诉诸于尖锐的金属尖端与光滑的金属膜之间的等离子体耦合(“间隙模式”),在间隙之间形成了纳米级的腔,其中电场增强比纳米级高几个数量级。单个金属笔尖。到目前为止,间隙模式TERS在小分子的检测和成像方面已经取得了巨大的成功。在理想条件下,已经报道了亚分子分辨率。但是,对于脂质,蛋白质或无法轻易转移到金属膜上的较大分子,“间隙模式” TERS难以实施。为了解决这个问题,我们将锋利的金属尖端与可寻址的纳米粒子探针(功能化的纳米粒子)结合在一起,以同时实现更高的信号增强和化学特异性。我们发现,通过将Au-ball AFM尖端耦合到结合到蛋白质涂层表面上的金属纳米粒子(AuNP),可以在结合的纳米粒子下方产生蛋白质的拉曼信号(第2章)。根据这一结果,我们进一步将该技术扩展为使用环状RGD配体官能化的AuNPs在固定细胞上成像整合素受体(第3章),并测试了该方法区分野生型链霉亲和素的不同突变体的能力(第4章)。论文的第二部分报告了亚纳米等离子体激元结中的电子隧穿效应,通过实验观察到的等离子体激元共振位移和腈峰位移证明了这一点(第五章)。从理论上预测和实验观察到等离子隙中的电子隧穿效应和非局域效应会引起耦合等离激元模式的蓝移和展宽。当电导率变得足够大时,此效应最终会由于电荷屏蔽而导致局部电场减小。实验上报道了振动鲜明效应(VSE)通过特定振动模式下的明显位移来监视局部电场。在这里,我们将VSE用作分子电压表,以跟踪镜面纳米粒子(NPoM)结的间隙尺寸从纳米调制到亚纳米状态时的腈态正常模式的变化,并表明局部电的细微变化场可能与电子隧穿有关,这由暗场散射中的蓝移所证实。

著录项

  • 作者

    Wang, Hao.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Physical chemistry.;Analytical chemistry.;Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:46:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号