首页> 外文会议>Advances in Photonics of Quantum Computing, Memory, and Communication XII >Towards fast and scalable trapped-ion quantum logic with integrated photonics
【24h】

Towards fast and scalable trapped-ion quantum logic with integrated photonics

机译:借助集成光子技术实现快速,可扩展的捕获离子量子逻辑

获取原文
获取原文并翻译 | 示例

摘要

Trapped-ion qubits promise certain fundamental advantages for quantum information processing (QIP), owingto their indistinguishability and relatively high isolation from noisy environments. Though these qualities haveallowed demonstrations of the necessary primitives for quantum computation, the complexity of the optical apparatusrequired is a major impediment to implementation at scales where quantum systems offer a clear advantageover classical computers. Here, we build on previous work with trap-integrated waveguide optics, describing designsand simulations for commercial foundry-fabricated ion trap chips with integrated Si_3N_4 waveguides andgrating couplers to implement multi-qubit operations. We detail a design intended to address and implementquantum logic gates between 5 ions in a single register, and a configuration which utilizes the stable on-chippath lengths of waveguide devices to enact a novel fast entangling two-qubit gate. The devices and approachespresented here could form elements of a scalable architecture for trapped-ion QIP.
机译:被困离子量子位因其不可区分性和与嘈杂环境的相对较高隔离而有望为量子信息处理(QIP)提供某些基本优势。尽管这些性质已经禁止了量子计算的必要原语的演示,但所需的光学设备的复杂性是在量子系统相对于传统计算机提供明显优势的规模上实现的主要障碍。在此,我们以陷阱集成波导光学器件的先前工作为基础,描述了带有集成Si_3N_4波导和实现多量子位操作的耦合器的商用铸造制造离子陷阱芯片的设计和仿真。我们详细介绍了旨在解决和实现单个寄存器中5个离子之间的量子逻辑门的设计,以及一种利用波导器件的稳定片内路径长度来制定新颖的快速纠缠二量子位的配置。门。此处介绍的设备和方法可以构成用于捕获离子QIP的可伸缩体系结构的元素。

著录项

  • 来源
  • 会议地点 0277-786X;1996-756X
  • 作者单位

    Department of Physics, Institute for Quantum Electronics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland mehtak@phys.ethz.ch,;

    Department of Physics, Institute for Quantum Electronics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland;

    Department of Physics, Institute for Quantum Electronics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland;

    Department of Physics, Institute for Quantum Electronics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号