首页> 外文期刊>Nature >Fast quantum logic gates with trapped-ion qubits
【24h】

Fast quantum logic gates with trapped-ion qubits

机译:具有俘获离子量子位的快速量子逻辑门

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum bits (qubits) based on individual trapped atomic ions are a promising technology for building a quantum computer(1). The elementary operations necessary to do so have been achieved with the required precision for some error-correction schemes(2-4). However, the essential two-qubit logic gate that is used to generate quantum entanglement has hitherto always been performed in an adiabatic regime (in which the gate is slow compared with the characteristic motional frequencies of the ions in the trap(3-7)), resulting in logic speeds of the order of 10 kilohertz. There have been numerous proposals of methods for performing gates faster than this natural 'speed limit' of the trap(8-12). Here we implement one such method(11), which uses amplitude-shaped laser pulses to drive the motion of the ions along trajectories designed so that the gate operation is insensitive to the optical phase of the pulses. This enables fast (megahertz-rate) quantum logic that is robust to fluctuations in the optical phase, which would otherwise be an important source of experimental error. We demonstrate entanglement generation for gate times as short as 480 nanoseconds-less than a single oscillation period of an ion in the trap and eight orders of magnitude shorter than the memory coherence time measured in similar calcium-43 hyperfine qubits. The power of the method is most evident at intermediate timescales, at which it yields a gate error more than ten times lower than can be attained using conventional techniques; for example, we achieve a 1.6-microsecond-duration gate with a fidelity of 99.8 per cent. Faster and higher-fidelity gates are possible at the cost of greater laser intensity. The method requires only a single amplitude-shaped pulse and one pair of beams derived from a continuous-wave laser. It offers the prospect of combining the unrivalled coherence properties(2,13), operation fidelities(2-4) and optical connectivity(14) of trapped-ion qubits with the submicrosecond logic speeds that are usually associated with solid-state devices(15,16).
机译:基于单个被俘获的原子离子的量子位(qubits)是建造量子计算机的一种有前途的技术(1)。对于某些纠错方案(2-4),已经以所需的精度实现了必要的基本操作。然而,迄今为止,用于产生量子纠缠的基本两比特逻辑门始终是在绝热状态下执行的(与栅中离子的特征运动频率相比,该门速度较慢(3-7)) ,导致逻辑速度达到10 kHz。已经提出了许多方法来执行比陷阱的自然“速度极限”更快的门的方法(8-12)。在这里,我们实现了一种这样的方法(11),该方法使用振幅形状的激光脉冲来驱动离子沿着设计的轨迹运动,以使门操作对脉冲的光学相位不敏感。这样可以实现对光相位波动具有鲁棒性的快速(兆赫兹速率)量子逻辑,否则它将成为实验误差的重要来源。我们证明了纠缠生成的时间比陷阱中离子的单个振荡周期短了480纳秒,比在类似的钙43超精细量子位中测量的存储相干时间短了八个数量级。该方法的功能在中间时间尺度上最为明显,在这种情况下,它产生的选通误差比使用常规技术所能达到的低十倍。例如,我们实现了1.6微秒持续时间的门,保真度为99.8%。更快,更高保真度的闸门可能会以更大的激光强度为代价。该方法仅需要单个振幅形状的脉冲和一对来自连续波激光器的光束。它提供了将捕获离子量子位的无与伦比的相干性(2,13),操作保真度(2-4)和光学连接性(14)与通常与固态设备相关联的亚微秒逻辑速度相结合的前景(15) ,16)。

著录项

  • 来源
    《Nature》 |2018年第7694期|75-78|共4页
  • 作者单位

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

    Univ Oxford, Clarendon Lab, Dept Phys, Parks Rd, Oxford OX1 3PU, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 02:51:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号