首页> 外文会议>Photonic and phononic properties of engineered nanostructures V >Shaping plasmonic light beams with near-field plasmonic holograms
【24h】

Shaping plasmonic light beams with near-field plasmonic holograms

机译:用近场等离子体全息图塑造等离子体光束

获取原文
获取原文并翻译 | 示例

摘要

Surface-plasmon waves have been utilized in many applications such as biological and chemical sensing and trapping, sub-wavelength optics, nonlinear optics, optical communication and more. Controlling the shape and trajectory of these waves is a key feature in enabling all of the above applications, and a challenging task. The fundamental challenges resides in the different wave properties of surface plasmon waves, with comparison to free-space waves: First, coupling a surface plasmon wave from a free-space wave requires a compensation for the missing momentum between the two wave-vectors. Second, owing to the limited propagation length of surface plasmons and the limited measurement range of their characterization tools, the resulting beams should be formed directly in the near-field. Third, unlike planar phase plates, surface plasmons are excited over a finite propagation distance and therefore their phase cannot be simply defined at a specific one-dimensional plane. Fourth, dynamic tools for controlling the wavefront of free-space beams, like spatial-light-modulators, do not exist for surface plasmons. Here we demonstrate, both numerically and experimentally, a robust holographic scheme that provides complete control over the amplitude and phase of surface-plasmons, thereby enabling the engineering of any desired plasmonic light beam. We show how all of the above challenges can be overcome by introducing a new class of binary plasmonic holograms, which are designed specifically for the near-filed. We demonstrate a large variety of plasmonic beams, such as "self-similar", "non-diffracting", "self-accelerating", "self-healing", paraxial and non-paraxial plasmonic beams, and also the dynamic generation of plasmonic bottle-beams for micromanipulation of particles.
机译:表面等离子体激元波已被用于许多应用中,例如生物和化学传感和捕获,亚波长光学,非线性光学,光通信等。控制这些波的形状和轨迹是实现上述所有应用程序的关键特征,并且是一项艰巨的任务。与自由空间波相比,基本挑战在于表面等离激元波的不同波动特性:首先,将表面等离激元波与自由空间波耦合需要补偿两个波矢之间的动量。其次,由于表面等离激元的传播长度有限以及其表征工具的测量范围有限,因此应在近场中直接形成合成束。第三,与平面相板不同,表面等离子体激元在有限的传播距离上被激发,因此它们的相位不能简单地定义在特定的一维平面上。第四,对于表面等离激元,不存在用于控制自由空间光束波前的动态工具,例如空间光调制器。在这里,我们在数值上和实验上都演示了一种强大的全息方案,该方案可以完全控制表面等离激元的幅度和相位,从而能够对任何所需的等离激元光束进行工程设计。我们展示了如何通过引入一类新的二进制等离激元全息图来克服所有上述挑战,这些全息图是专为近场设计的。我们演示了各种各样的等离子束,例如“自相似”,“非衍射”,“自加速”,“自愈”,近轴和非近轴等离子束,以及动态产生的等离子束用于微粒操纵的瓶梁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号