首页> 外文学位 >Plasmonic control of light emission for enhanced efficiency and beam shaping.
【24h】

Plasmonic control of light emission for enhanced efficiency and beam shaping.

机译:等离子控制发光,以提高效率和光束整形。

获取原文
获取原文并翻译 | 示例

摘要

InGaN alloys and related quantum structures are of great technological importance for the development of visible light emitting devices, motivated by a wide range of applications, particularly solid-state lighting. The InxGa1--xN material system provides continuous emission tuning from the ultraviolet across the visible spectrum by changing the In content. InGaN/GaN quantum wells (QW) also provide an efficient medium for electroluminescence for use as light emitting diodes. It is well known, however, that increasing the In content degrades the internal quantum efficiency of these devices, particularly in the green region of the spectrum. These limitations must be overcome before efficient all-solid-state lighting can be developed beyond the blue-green region using this material system.;Recently, the application of plasmonic excitations supported by metallic nanostructures has emerged as a promising approach to address this issue. In this work, metallic nanoparticles (NPs) and nanostructures that support plasmonic modes are engineered to increase the local density of states of the electromagnetic field that overlaps the QW region. This leads to an enhancement of the spontaneous emission rate of the QW region mediated by direct coupling into the plasmonic modes of the nanostructure. Energy stored in these modes can then scatter efficiently into free-space radiation, thereby enhancing the light output intensity.;The first section of this thesis concerns the enhancement of InGaN/GaN QW light emission by utilizing localized surface plasmon resonances (LSPRs) and lattice surface modes of metal NP arrays. This work comprises a detailed study of the effect of geometry variations of Ag NPs on the LSPR wavelength, and the subsequent demonstration of photoluminescence intensity enhancement by Ag NPs in the vicinity of InGaN multiple QWs. The second section of this thesis concerns the far-field control of QW emission utilizing metallic nanostructures that support plasmonic excitations. This includes a study of the dispersion and competing effects of a metallic NP-film system, and the demonstration of beam collimation and unidirectional diffraction utilizing a similar geometry. These results may find novel applications in the emerging field of solid-state smart lighting.
机译:InGaN合金和相关的量子结构对于可见光发射器件的开发具有重要的技术意义,这是由广泛的应用(尤其是固态照明)推动的。 InxGa1-xN材料系统通过改变In含量,可在可见光谱范围内对紫外线进行连续发射调整。 InGaN / GaN量子阱(QW)还提供了一种有效的电致发光介质,可用作发光二极管。然而,众所周知,增加In的含量会降低这些器件的内部量子效率,特别是在光谱的绿色区域。在使用这种材料系统开发有效的全固态照明超出蓝绿色区域之前,必须克服这些局限性。最近,由金属纳米结构支持的等离子体激元激发的应用已成为解决该问题的一种有前途的方法。在这项工作中,支持等离子激元模式的金属纳米颗粒(NPs)和纳米结构经过工程设计,以增加与QW区域重叠的电磁场状态的局部密度。这导致通过直接耦合进入纳米结构的等离子体模式介导的QW区域的自发发射速率的提高。然后,以这些模式存储的能量可以有效地散射到自由空间辐射中,从而增强光输出强度。本论文的第一部分涉及通过利用局部表面等离子体激元共振(LSPR)和晶格来增强InGaN / GaN QW发光金属NP阵列的表面模式。这项工作包括对Ag NP的几何变化对LSPR波长的影响的详细研究,以及随后在InGaN多个QW附近通过Ag NP增强光致发光强度的演示。本文的第二部分涉及利用支持等离子体激元激发的金属纳米结构对QW发射进行远场控制。这包括对金属NP膜系统的色散和竞争效应的研究,以及使用相似几何形状的光束准直和单向衍射的演示。这些结果可能会在固态智能照明的新兴领域中找到新颖的应用。

著录项

  • 作者

    DiMaria, Jeffrey V.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Electronics and Electrical.;Nanoscience.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号