首页> 外文会议>Photonic and phononic properties of engineered nanostructures >Plasmo-photonic NanopilJar Array for Large-Area Surface-Enhanced Raman Scattering Sensors
【24h】

Plasmo-photonic NanopilJar Array for Large-Area Surface-Enhanced Raman Scattering Sensors

机译:等离子光子NanopilJar阵列,用于大面积表面增强拉曼散射传感器

获取原文
获取原文并翻译 | 示例

摘要

The remarkably high electromagnetic fields that can be induced by the optical stimulation of surface plasmons in plasmonic nanostructures can induce large enhancements to Raman scattering. The Surface-enhanced Raman Scattering (SERS) effect offers great potential for the development of molecular sensors with low false alarm rates and high sensitivity. Although research in this field has grown at a very fast pace in recent years, most of this work has focused on attaining the highest enhancements at highly localized hot-spots, which while providing large peak enhancements, exhibit very low average enhancement factors, making their use for most sensing applications unlikely. Here we report on Au-coated Si nanopillar arrays where we probe the dependence of the SERS enhancement on both the nanopillar diameter and the interpillar gap over a range extending from 30 to 245 nm and 20 to 165 nm, respectively. This approach allows for the optimization of the SPR condition relative to the incident laser wavelength chosen, enabling an optimized SERS sensor. As the interparticle gaps approach 20 nm, we also explored arrays of nanopillars where interparticle plasmonic coupling should exist, however, it remains unclear if any such collective effects are present. The arrays created do illustrate very large highly uniform (<30% deviation) SERS enhancement factors (G), with G in excess of lxl0~7 being reported. In addition, we explored the role of the nanoparticle geometry, where we determined that a higher G is observed for circle in comparison to square nanopillars of similar dimensions. The SERS enhancement was found to have a very distinct dependence on the nanopillar diameter, while only a monotonic increase was observed with increasing interpillar gap. These results suggest great suitability of plasmo-photonic large-area nanopillar arrays for SERS vapor and liquid sensor applications.
机译:等离子体纳米结构中的表面等离子体激元的光刺激可以诱导出非常高的电磁场,从而可以大大增强拉曼散射。表面增强拉曼散射(SERS)效应为低误报率和高灵敏度的分子传感器的开发提供了巨大的潜力。尽管近年来该领域的研究以非常快的速度增长,但是大部分工作都集中在在高度局部化的热点上实现最高的增强,这些热点虽然提供了大的峰值增强,但显示出非常低的平均增强因子,因此用于大多数传感应用的可能性不大。在这里,我们报道了金包被的Si纳米柱阵列,我们在30到245 nm和20到165 nm范围内探究了SERS增强对纳米柱直径和柱间间隙的依赖性。这种方法允许相对于所选的入射激光波长优化SPR条件,从而实现优化的SERS传感器。当粒子间的间隙接近20 nm时,我们还探索了应存在粒子间等离子体耦合的纳米柱阵列,但是,尚不清楚是否存在任何此类集体效应。创建的阵列确实说明了非常大的高度均匀的(<30%偏差)SERS增强因子(G),据报道G超过1x10〜7。此外,我们探索了纳米颗粒几何形状的作用,确定了与类似尺寸的方形纳米柱相比,观察到的圆具有更高的G。发现SERS增强对纳米柱直径具有非常明显的依赖性,而随着柱间间隙的增加,仅观察到单调增加。这些结果表明,等离子体光子大面积纳米柱阵列非常适合SERS蒸气和液体传感器应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号