首页> 外文会议>Ultrafast Phenomena and Nanophotonics XXIII >Terahertz Strong-Field Physics without a Strong External Terahertz Field
【24h】

Terahertz Strong-Field Physics without a Strong External Terahertz Field

机译:没有强外部太赫兹场的太赫兹强场物理学

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, strong-field physics explores phenomena in laser-driven matter (atoms, molecules, and solids)that cannot be understood by treating the laser field as a small perturbation. Therefore, the presence of anextremely strong external field is usually a prerequisite for observing strong-field phenomena. However, evenin the complete absence of an external electromagnetic field, strong-field phenomena can arise when matterstrongly couples with the zero-point field of the quantum vacuum state, i.e., uctuating electromagnetic waveswhose expectation value is zero. This can occur in free space where the matter strongly interacts with acontinuum of photon modes, but some of the most striking examples of strong-field physics without an externalfield occur in a cavity setting, in which an ensemble of two-level atoms resonantly interacts with a single photonicmode of vacuum fields, producing vacuum Rabi splitting. In particular, the nature of the matter{vacuum-fieldcoupled system fundamentally changes when the coupling rate (equal to one half of the vacuum Rabi splitting)becomes comparable to, or larger than, the resonance frequency. In this so-called ultrastrong coupling regime,a non-negligible number of photons exist in the ground state of the coupled system. Furthermore, the couplingrate can be cooperatively enhanced (via so-called Dicke cooperativity) when the matter is comprised of a largenumber of identical two-level particles, and a quantum phase transition is predicted to occur as the coupling ratereaches a critical value. Low-energy electronic or magnetic transitions in many-body condensed matter systemswith large dipole moments are ideally suited for searching for these predicted phenomena. Here, we discusstwo condensed matter systems that have shown cooperative ultrastrong interactions in the terahertz frequencyrange: a Landau-quantized two-dimensional electron gas interacting with high-quality-factor cavity photons, andan Er~(3+) spin ensemble interacting with Fe~(3+) magnons in ErFeO_3.
机译:传统上,强场物理学探索激光驱动物质(原子,分子和固体)中的现象,这是无法通过将激光场视为小扰动来理解的。因此,存在一个\ r \一个非常强的外部场通常是观察强场现象的先决条件。但是,即使在完全不存在外部电磁场的情况下,当物质与量子真空状态的零点场强烈耦合时,也可能会出现强场现象,即,使电磁波受控制。其期望值为零。这可能发生在物质与光子连续模强烈相互作用的自由空间中,但是在没有外场的强场物理学中,一些最引人注目的例子发生在空腔环境中,其中一个整体两级原子的共振与真空场的单个光子模式共振相互作用,从而产生真空拉比分裂。特别地,当耦合速率(等于真空拉比裂隙的一半)变得等于或大于共振频率时,物质的性质{真空场\ r \ n耦合系统从根本上改变。在这种所谓的超强耦合机制中,耦合系统的基态中存在不可忽略的光子数量。此外,当物质由大量相同的两能级粒子组成,并且随着相变而发生量子相变时,可以协同提高耦合度(通过所谓的Dicke合作性)。耦合率\ r \ n达到临界值。具有大偶极矩的多体凝聚态系统中的低能电子或磁性跃迁非常适合搜索这些预测现象。在这里,我们讨论\ n这两个凝聚态系统,它们在太赫兹频率上表现出协同的超强相互作用\ r \ nrange:Landau量化的二维电子气与高质量因子腔光子的相互作用,和\ r \ nan Er〜(3+)自旋系与ErFeO_3中的Fe〜(3+)磁振子相互作用。

著录项

  • 来源
    《Ultrafast Phenomena and Nanophotonics XXIII》|2019年|1091605.1-1091605.14|共14页
  • 会议地点 0277-786X;1996-756X
  • 作者单位

    Department of Materials Engineering Science, Osaka University, Toyonaka 560-8531, Japan PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan bamba@qi.mp.es.osaka-u.ac.jp, Telephone: +81-(0)6-6850-6504;

    Department of Electrical and Computer Engineering, Rice University, Houston 77005, USA xl39@rice.edu, Telephone: (713)-348-6313;

    Department of Electrical and Computer Engineering, Rice University, Houston 77005, USA Department of Material Science and NanoEngineering, Rice University, Houston 77005, USA Department of Physics and Astronomy, Rice University, Houston 77005, USA kono@rice.edu, Telephone: (713)-348-2209;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号