首页> 外文会议>Pattern recognition and machine intelligence >Foreground Text Extraction in Color Document Images for Enhanced Readability
【24h】

Foreground Text Extraction in Color Document Images for Enhanced Readability

机译:彩色文档图像中的前景文本提取可增强可读性

获取原文
获取原文并翻译 | 示例

摘要

Quite often it is observed that text information in documents is printed on colorful complex background. Smooth reading of text content in such documents is difficult due to background patterns and mix up of foreground text color with background color. Further the character recognition rate when such documents are OCRed, is low. In this paper we are presenting a novel approach for extraction of text information in complex color document images. The proposed approach is a three stage process. In the first stage the edge map is obtained utilizing the Canny edge operator. The edge map is split into blocks of uniform size and image blocks are classified as text or non-text. In each text block the possible text regions are identified and enclosed in tight bounding boxes using x-y cut on edge pixels. Further the text regions that are immediate adjacent to each other in vertical direction in which the character(s) are split horizontally are merged so as to enclose the character(s) fully in one text region. In the second stage certain amount of false text regions are eliminated based on a property of printed text. In the last stage the foreground text in each text region is extracted by unsupervised thresholding using the data of refined text regions. We conducted exhaustive experiments on documents having variety of background complexities with printed foreground text in any color, font and tilt. The experimental evaluations show that on an average 98.03% of text is identified. The processed document images showed better performance when OCRed compared with the corresponding unprocessed source document images.
机译:经常观察到文档中的文本信息是在彩色复杂背景上打印的。由于背景图案的原因,很难顺利读取此类文档中的文本内容,并且前景文本颜色与背景颜色混合在一起很困难。此外,当此类文档为OCRed时,字符识别率较低。在本文中,我们提出了一种在复杂的彩色文档图像中提取文本信息的新颖方法。提议的方法是一个三阶段过程。在第一阶段,利用Canny边缘算子获得边缘图。边缘图被分成大小一致的块,图像块被分类为文本或非文本。在每个文本块中,使用在边缘像素上进行的x-y切割,识别可能的文本区域并将其封闭在严格的边界框中。另外,在水平方向上分割字符的在垂直方向上彼此紧邻的文本区域被合并,以将字符完全包围在一个文本区域中。在第二阶段,基于打印文本的属性,消除了一定数量的错误文本区域。在最后阶段,使用精炼文本区域的数据通过无监督阈值提取每个文本区域中的前景文本。我们对具有各种背景复杂性的文档进行了详尽的实验,这些文档打印了任何颜色,字体和倾斜度的前景文本。实验评估表明,平均可以识别出98.03%的文本。与相应的未处理源文档图像相比,使用OCRed时,已处理文档图像显示出更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号