首页> 外文会议>Pattern Recognition and Machine Intelligence >Offline Handwritten Devanagari Word Recognition: An HMM Based Approach
【24h】

Offline Handwritten Devanagari Word Recognition: An HMM Based Approach

机译:离线手写体梵文单词识别:一种基于HMM的方法

获取原文
获取原文并翻译 | 示例

摘要

A hidden Markov model (HMM) for recognition of handwritten Devanagari words is proposed. The HMM has the property that its states are not defined a priori, but are determined automatically based on a database of handwritten word images. A handwritten word is assumed to be a string of several stroke primitives. These are in fact the states of the proposed HMM and are found using certain mixture distributions. One HMM is constructed for each word. To classify an unknown word image, its class conditional probability for each HMM is computed. The classification scheme has been tested on a small handwritten Devanagari word database developed recently. The classification accuracy is 87.71% and 82.89% for training and test sets respectively.
机译:提出了一种隐马尔可夫模型(HMM),用于识别梵文手写单词。 HMM具有以下特性:其状态不是先验定义的,而是根据手写文字图像的数据库自动确定的。假定一个手写单词是几个笔画原语的字符串。这些实际上是建议的HMM的状态,可以使用某些混合分布找到。每个单词都构建一个HMM。为了对未知单词图像进行分类,计算每个HMM的分类条件概率。分类方案已在最近开发的小型手写梵文单词数据库上进行了测试。训练和测试集的分类准确度分别为87.71%和82.89%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号