首页> 外文会议>Pattern Recognition; Lecture Notes in Computer Science; 4174 >On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-temporal Regularization
【24h】

On-Line Variational Estimation of Dynamical Fluid Flows with Physics-Based Spatio-temporal Regularization

机译:基于物理时空正则化的动态流体在线变化估计

获取原文
获取原文并翻译 | 示例

摘要

We present a variational approach to motion estimation of instationary fluid flows. Our approach extends prior work along two directions: (ⅰ) The full incompressible Navier-Stokes equation is employed in order to obtain a physically consistent regularization which does not suppress turbulent flow variations. (ⅱ) Regularization along the time-axis is employed as well, but formulated in a receding horizon manner contrary to previous approaches to spatio-temporal regularization. This allows for a recursive on-line (non-batch) implementation of our estimation framework. Ground-truth evaluations for simulated turbulent flows demonstrate that due to imposing both physical consistency and temporal coherency, the accuracy of flow estimation compares favourably even with optical flow approaches based on higher-order div-curl regularization.
机译:我们提出了一种变分方法来估计固定流体的运动。我们的方法沿两个方向扩展了先前的工作:(ⅰ)使用完全不可压缩的Navier-Stokes方程,以便获得物理上一致的正则化,而不会抑制湍流的变化。 (ⅱ)也采用了沿时间轴的正则化,但是以后退的方式制定,这与以前的时空正则化方法相反。这允许我们的估计框架的递归在线(非批处理)实现。对模拟湍流的地面真相评估表明,由于强加了物理一致性和时间相干性,即使使用基于高阶div-curl正则化的光学流方法,流估计的准确性也具有可比性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号