首页> 外文会议>Pattern Recognition; Lecture Notes in Computer Science; 4174 >Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity
【24h】

Robust MEG Source Localization of Event Related Potentials: Identifying Relevant Sources by Non-Gaussianity

机译:事件相关电位的可靠MEG源本地化:通过非高斯性识别相关源

获取原文
获取原文并翻译 | 示例

摘要

Independent Component Analysis (ICA) is a frequently used preprocessing step in source localization of MEG and EEG data. By decomposing the measured data into maximally independent components (ICs), estimates of the time course and the topographies of neural sources are obtained. In this paper, we show that when using estimated source topographies for localization, correlations between neural sources introduce an error into the obtained source locations. This error can be avoided by reprojecting ICs onto the observation space, but requires the identification of relevant ICs. For Event Related Potentials (ERPs), we identify relevant ICs by estimating their non-Gaussianity. The efficacy of the approach is tested on auditory evoked potentials (AEPs) recorded by MEG. It is shown that ten trials are sufficient for reconstructing all important characteristics of the AEP, and source localization of the reconstructed ERP yields the same focus of activity as the average of 250 trials.
机译:独立成分分析(ICA)是MEG和EEG数据源定位中经常使用的预处理步骤。通过将测得的数据分解成最大独立的分量(IC),可以获得时程和神经源拓扑的估计值。在本文中,我们表明,当使用估计的源地形进行定位时,神经源之间的相关性将误差引入到获得的源位置中。可以通过将IC重新投影到观察空间来避免此错误,但是需要识别相关的IC。对于事件相关电位(ERP),我们通过估计其非高斯性来确定相关的IC。该方法的有效性在MEG记录的听觉诱发电位(AEP)上进行了测试。结果表明,十项试验足以重建AEP的所有重要特征,而重建后的ERP的源定位与250项试验的平均值具有相同的活动重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号