首页> 外文会议>Pattern recognition in bioinformatics >MC~4: A Tempering Algorithm for Large-Sample Network Inference
【24h】

MC~4: A Tempering Algorithm for Large-Sample Network Inference

机译:MC〜4:一种用于大样本网络推理的调温算法

获取原文
获取原文并翻译 | 示例

摘要

Bayesian networks and their variants are widely used for modelling gene regulatory and protein signalling networks. In many settings, it is the underlying network structure itself that is the object of inference. Within a Bayesian framework inferences regarding network structure are made via a posterior probability distribution over graphs. However, in practical problems, the space of graphs is usually too large to permit exact inference, motivating the use of approximate approaches. An MCMC-based algorithm known as MC3 is widely used for network inference in this setting. We argue that recent trends towards larger sample size datasets, while otherwise advantageous, can, for reasons related to concentration of posterior mass, render inference by MC3 harder. We therefore exploit an approach known as parallel tempering to put forward an algorithm for network inference which we call MC4. We show empirical results on both synthetic and proteomic data which highlight the ability of MC4 to converge faster and thereby yield demonstrably accurate results, even in challenging settings where MC3 fails.
机译:贝叶斯网络及其变体被广泛用于建模基因调控和蛋白质信号网络。在许多情况下,推理的对象是基础网络结构本身。在贝叶斯框架内,有关网络结构的推断是通过图上的后验概率分布进行的。但是,在实际问题中,图的空间通常太大而无法进行精确推论,从而激发了近似方法的使用。在这种情况下,称为MC3的基于MCMC的算法被广泛用于网络推断。我们认为,近来趋向于更大的样本量数据集的趋势虽然具有其他优势,但由于与后部质量集中有关的原因,可能会使MC3的推断变得更加困难。因此,我们利用一种称为并行调节的方法来提出一种用于网络推理的算法,我们称之为MC4。我们在合成数据和蛋白质组数据上均显示了经验结果,这些结果突出了MC4收敛速度更快的能力,从而即使在具有挑战性的环境中,即使MC3失败,其结果也可以证明是准确的结果。

著录项

  • 来源
    《Pattern recognition in bioinformatics》|2010年|p.431-442|共12页
  • 会议地点 Nijmegen(NL);Nijmegen(NL)
  • 作者单位

    Centre for Complexity Science, University of Warwick, Coventry, U.K. CV4 7AL Department of Physics, University of Warwick, Coventry, U.K. CV4 7AL;

    Centre for Complexity Science, University of Warwick, Coventry, U.K. CV4 7AL Department of Statistics, University of Warwick, Coventry, U.K. CV4 7AL;

    Department of Statistics, University of Warwick, Coventry, U.K. CV4 7AL Centre for Complexity Science, University of Warwick, Coventry, U.K. CV4 7AL;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物工程学(生物技术);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号