首页> 外文期刊>International journal for uncertainty quantifications >BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO
【24h】

BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO

机译:随机反应网络的贝叶斯推动使用多尺寸连续钢化马尔可夫链蒙特卡罗

获取原文
获取原文并翻译 | 示例
           

摘要

Stochastic reaction network models are often used to explain and predict the dynamics of gene regulation in single cells. These models usually involve several parameters, such as the kinetic rates of chemical reactions, that are not directly measurable and must be inferred from experimental data. Bayesian inference provides a rigorous probabilistic framework for identifying these parameters by finding a posterior parameter distribution that captures their uncertainty. Traditional computational methods for solving inference problems such as Markov chain Monte Carlo methods based on the classical Metropolis-Hastings algorithm involve numerous serial evaluations of the likelihood function, which in turn requires expensive forward solutions of the chemical master equation (CME). We propose an alternate approach based on a multifidelity extension of the sequential tempered Markov chain Monte Carlo (ST-MCMC) sampler. This algorithm is built upon sequential Monte Carlo and solves the Bayesian inference problem by decomposing it into a sequence of efficiently solved subproblems that gradually increase both model fidelity and the influence of the observed data. We reformulate the finite state projection (FSP) algorithm, a well-known method for solving the CME, to produce a hierarchy of surrogate master equations to be used in this multifidelity scheme. To determine the appropriate fidelity, we introduce a novel information-theoretic criterion that seeks to extract the most information about the ultimate Bayesian posterior from each model in the hierarchy without inducing significant bias. This novel sampling scheme is tested with high-performance computing resources using biologically relevant problems.
机译:随机反应网络模型通常用于解释和预测单细胞中基因调控的动态。这些模型通常涉及几种参数,例如化学反应的动力率,这是不可测量的,并且必须从实验数据推断出来。贝叶斯推理提供了一种严格的概率框架,用于通过查找捕获其不确定性的后参数分布来识别这些参数。用于解决推理问题的传统计算方法,如Markov链蒙特卡罗方法,如经典的大都市 - Hastings算法涉及似然函数的许多串行评估,这反过来需要化学母部方程(CME)的昂贵的前向解。我们提出了一种基于顺序钢化马尔可夫链蒙特卡罗(ST-MCMC)采样器的多尺寸的替代方法。该算法在顺序蒙特卡罗之上构建,通过将其分解成一系列有效解决的子问题,解决了贝叶斯推理问题,逐渐增加模型保真度和观察数据的影响。我们重构有限状态投影(FSP)算法,一种用于解决CME的众所周知的方法,用于在该多尺寸方案中产生替代母版方程的层次结构。为了确定适当的保真度,我们介绍了一种新颖的信息理论标准,寻求从层次结构中的每个模型中提取有关最终​​贝叶斯的最大信息的信息,而不会引起显着的偏见。这种新颖的采样方案使用生物学上相关的问题进行了高性能计算资源测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号