首页> 外文会议>Pattern recognition in bioinformatics >Microarray Time-Series Data Clustering via Multiple Alignment of Gene Expression Profiles
【24h】

Microarray Time-Series Data Clustering via Multiple Alignment of Gene Expression Profiles

机译:通过基因表达谱的多重比对的微阵列时间序列数据聚类

获取原文
获取原文并翻译 | 示例

摘要

Genes with similar expression profiles are expected to be functionally related or co-regulated. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a k-means clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yields excellent results with 79.64% accuracy.
机译:具有相似表达谱的基因预期在功能上相关或共同调控。在这个方向上,最近已经引入了通过逐段线性轮廓的成对对准来聚类微阵列时间序列数据。我们提出了一种基于基因表达谱的天然三次样条表示的多重比对的k-均值聚类方法。通过在一组轮廓上定义的时间间隔内最小化平方误差的总和,可以实现多重对齐。在221个预簇啤酒酵母基因表达谱的众所周知的数据集上进行的初步实验以79.64%的准确度产生了出色的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号