首页> 外文会议>Pattern Recognition, 2009. CCPR 2009 >Segmentation of Magnetic Resonance Brain Tissues Image Based on Support Vector Machines and Level Set Method
【24h】

Segmentation of Magnetic Resonance Brain Tissues Image Based on Support Vector Machines and Level Set Method

机译:基于支持向量机和水平集方法的磁共振脑组织图像分割

获取原文

摘要

MRI medical image segmentation is one of important problem in medical image processing. It is more challenging compared to other image processing problems due to the large variability in shapes, complexity of medical structures. In the paper, a new segmentation approach of magnetic resonance brain tissues image based on support vector machines (SVM) and level set method is presented. Firstly, reduced dimension based feature extraction followed by principal component analysis (PCA) is carried out and obtained results are used to train a SVM classifier. The result of classifier which closes to correct boundaries provides initial contours for the level set. Combined with SVM, level set method can achieve a refined and robust medical segmentation. The experimental results show that presented approach has faster convergence speed and better classification accuracy.
机译:MRI医学图像分割是医学图像处理中的重要问题之一。与其他图像处理问题相比,由于形状的大变化和医疗结构的复杂性,它更具挑战性。提出了一种基于支持向量机和水平集的磁共振脑组织图像分割方法。首先,进行基于降维的特征提取,然后进行主成分分析(PCA),并将获得的结果用于训练SVM分类器。接近正确边界的分类器结果为水平集提供了初始轮廓。结合支持向量机,水平集方法可以实现精细而强大的医学细分。实验结果表明,该方法具有更快的收敛速度和更好的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号