首页> 外文会议>Pattern Recognition, 2009. CCPR 2009 >Texture Defect Detection of Wire Rope Surface with Support Vector Data Description
【24h】

Texture Defect Detection of Wire Rope Surface with Support Vector Data Description

机译:支持向量数据描述的钢丝绳表面纹理缺陷检测

获取原文

摘要

It is a difficult problem to describe the feature of wire rope texture with fault. The one-class classification method is adopted to description the feature of the faultless wire rope images. A method is presented to detect the surface defect of wire rope based the support vector data description (SVDD) method. The model selection and parameter optimize methods of SVDD are discussed thoroughly. Then, the bandwidth of Gauss kernel function is optimized to minimize the mean of false alarm rate in the experiment. The experiment is carried out to detect the surface fault of airplane control ropes with different diameters (4-6 mm). The test of defect detection is carried out in 200 wire rope images, and the results indicate that the detecting accuracy is 93%. The method is valuable for detecting the surface local fault of aircraft control rope practically.
机译:用故障来描述钢丝绳质地的特征是一个困难的问题。采用一类分类方法来描述无缺陷钢丝绳图像的特征。提出了一种基于支持向量数据描述(SVDD)方法的钢丝绳表面缺陷检测方法。深入讨论了SVDD的模型选择和参数优化方法。然后,对高斯核函数的带宽进行了优化,以最大程度地减少实验中虚警率的平均值。进行该实验以检测具有不同直径(4-6 mm)的飞机控制绳的表面故障。在200张钢丝绳图像中进行了缺陷检测测试,结果表明检测精度为93%。该方法对实际检测飞机控制绳表面局部故障具有重要的参考价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号