首页> 外文会议>Passive and Active Network Measurement; Lecture Notes in Computer Science; 4427 >Understanding Urban Interactions from Bluetooth Phone Contact Traces
【24h】

Understanding Urban Interactions from Bluetooth Phone Contact Traces

机译:从蓝牙电话联系轨迹了解城市互动

获取原文
获取原文并翻译 | 示例

摘要

The increasing sophistication of mobile devices has enabled several mobile social software applications, which are based on opportunistic exchange of data amongst devices in proximity of each other. Examples include Delay Tolerant Networking (DTN) and PeopleNet. In this context, understanding user interactions is essential to designing algorithms which are efficient and enhance the user experience. In our experiment, users were handed Bluetooth enabled phones and asked to carry them all the time to log information about other devices in their proximity. Data was logged over several months, with over 350,000 contacts logged and over 10,000 unique devices discovered in this period.1 This paper analyzes this data by charactering the distributions of metrics such as contact time and inter-pair-contact time, and introducing several other important metrics useful for understanding user interactions. We find that most metrics follow a power law, except for inter-pair-contact time. We also look for patterns in user interactions, with the hope that these can be exploited for better algorithm design.
机译:移动设备的复杂程度不断提高,已经实现了多种移动社交软件应用程序,这些应用程序基于彼此附近的设备之间的数据机会交换。示例包括延迟容忍网络(DTN)和PeopleNet。在这种情况下,了解用户交互对于设计有效并增强用户体验的算法至关重要。在我们的实验中,向用户提供了支持蓝牙功能的电话,并要求他们一直随身携带以记录有关附近其他设备的信息。数据记录了几个月的时间,在此期间记录了超过350,000个联系人,并发现了10,000多个唯一设备。1本文通过表征指标分布(例如联系时间和对对联系时间)分析了此数据,并介绍了其他几个有助于理解用户交互的重要指标。我们发现,大多数度量标准都遵循幂定律,但对间联系时间除外。我们还在用户交互中寻找模式,希望可以将其用于更好的算法设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号