首页> 外文会议>Parallel processing for imaging applications >Advanced MRI Reconstruction Toolbox with Accelerating on GPU
【24h】

Advanced MRI Reconstruction Toolbox with Accelerating on GPU

机译:在GPU上加速的高级MRI重建工具箱

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a fast iterative magnetic resonance imaging (MRI) reconstruction algorithm taking advantage of the prevailing GPGPU programming paradigm. In clinical environment, MRI reconstruction is usually performed via fast Fourier transform (FFT). However, imaging artifacts (i.e. signal loss) resulting from susceptibility-induced magnetic field inhomogeneities degrade the quality of reconstructed images. These artifacts must be addressed using accurate modeling of the physics of the system coupled with iterative reconstruction. We have developed a reconstruction algorithm with improved image quality at the expense of computation time and hence an implementation on GPUs achieving significant speedup. In this work, we extend our previous work on GPU implementation by adding several new features. First, we enable Sensitivity Encoding for Fast MRI (SENSE) reconstruction (from data acquired using a multi-receiver coil array) which can reduce the acquisition time. Besides, we have implemented a GPU-based total variation regularization in our SENSE reconstruction framework. In this paper, we describe the different optimizations employed from levels of algorithm, program code structures, and specific architecture performance tuning, featuring both our MRI reconstruction algorithm and GPU hardware specifics. Results show that the current GPU implementation produces accurate image estimates while significantly accelerating the reconstruction.
机译:在本文中,我们提出了一种利用主流GPGPU编程范例的快速迭代磁共振成像(MRI)重建算法。在临床环境中,MRI重建通常通过快速傅立叶变换(FFT)进行。但是,由于磁化率引起的磁场不均匀性而引起的成像伪像(即信号损失)降低了重建图像的质量。必须使用对系统物理过程的精确建模以及迭代重建来解决这些问题。我们开发了一种重建算法,该算法以提高的图像质量为代价,但是却浪费了计算时间,因此在GPU上实现了显着的加速。在这项工作中,我们通过添加一些新功能扩展了我们先前在GPU实现方面的工作。首先,我们启用用于快速MRI(SENSE)重建的敏感度编码(从使用多接收器线圈阵列获取的数据中),从而可以缩短获取时间。此外,我们在SENSE重建框架中实现了基于GPU的总变化正则化。在本文中,我们描述了在算法,程序代码结构和特定体系结构性能调整方面采用的不同优化方法,其中包括我们的MRI重建算法和GPU硬件特性。结果表明,当前的GPU实施可产生准确的图像估计,同时显着加快了重建速度。

著录项

  • 来源
    《Parallel processing for imaging applications》|2011年|p.78720Q.1-78720Q.10|共10页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    Department of Electrical and Computer Engineerin, University of Illinois at Urbana-Champaign, 1406 W. Green St. Urbana, IL 61801 USA Bioengineering Department, University of Illinois at Urbana-Champaign, 1304 West Springfield Urbana, IL 61801 USA;

    rnBeckman Institute, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801 USA;

    Department of Electrical and Computer Engineerin, University of Illinois at Urbana-Champaign, 1406 W. Green St. Urbana, IL 61801 USA;

    Department of Electrical and Computer Engineerin, University of Illinois at Urbana-Champaign, 1406 W. Green St. Urbana, IL 61801 USA;

    et al;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 信息处理(信息加工);
  • 关键词

    MRI; GPU; SENSE; total variation regularization; field inhomogeneity, susceptibility;

    机译:核磁共振; GPU;感;总变异正则化;磁场不均匀性,磁化率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号