首页> 外文会议>Parallel processing for imaging applications >Parallel training and testing methods for complex image processing algorithms on distributed, heterogeneous,unreliable, and non-dedicated resources
【24h】

Parallel training and testing methods for complex image processing algorithms on distributed, heterogeneous,unreliable, and non-dedicated resources

机译:针对分布式,异构,不可靠和非专用资源的复杂图像处理算法的并行训练和测试方法

获取原文
获取原文并翻译 | 示例

摘要

Advances in the image processing field have brought new methods which are able to perform complex tasks robustly. However, in order to meet constraints on functionality and reliability, imaging application developers often design complex algorithms with many parameters which must be finely tuned for each particular environment. The best approach for tuning these algorithms is to use an automatic training method, but the computational cost of this kind of training method is prohibitive, making it inviable even in powerful machines. The same problem arises when designing testing procedures. This work presents methods to train and test complex image processing algorithms in parallel execution environments. The approach proposed in this work is to use existing resources in offices or laboratories, rather than expensive clusters. These resources are typically non-dedicated, heterogeneous and unreliable. The proposed methods have been designed to deal with all these issues. Two methods are proposed: intelligent training based on genetic algorithms and PVM, and a full factorial design based on grid computing which can be used for training or testing. These methods are capable of harnessing the available computational power resources, giving more work to more powerful machines, while taking its unreliable nature into account. Both methods have been tested using real applications.
机译:图像处理领域的进步带来了能够可靠地执行复杂任务的新方法。但是,为了满足功能和可靠性的约束,成像应用程序开发人员经常设计具有许多参数的复杂算法,这些参数必须针对每个特定环境进行微调。调整这些算法的最佳方法是使用自动训练方法,但是这种训练方法的计算成本令人望而却步,即使在功能强大的机器中也无法实现。设计测试程序时也会出现同样的问题。这项工作提出了在并行执行环境中训练和测试复杂图像处理算法的方法。这项工作中提出的方法是使用办公室或实验室中的现有资源,而不是使用昂贵的集群。这些资源通常是非专用,异构且不可靠的。拟议的方法已设计为处理所有这些问题。提出了两种方法:基于遗传算法和PVM的智能训练,以及基于网格计算的全因子设计,可用于训练或测试。这些方法能够利用可用的计算能力资源,为更强大的机器提供更多工作,同时考虑到其不可靠的性质。两种方法均已使用实际应用程序进行了测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号