首页> 外文会议>Optical Systems Design 2015: Computational Optics >Fast integral methods for integrated optical systems simulations - A review
【24h】

Fast integral methods for integrated optical systems simulations - A review

机译:用于集成光学系统仿真的快速积分方法-评论

获取原文
获取原文并翻译 | 示例

摘要

Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non-functional profiles, very deep ones, very large ones compared to wavelength, or simple smooth profiles. This integral method with either trigonometric or spline collocation, iterative solver with O(N~2) complexity, named IESMP, was significantly improved by an efficient mesh refinement, matrix preconditioning, Ewald summation method, and an exponentially convergent quadrature in 2006 by G. Schmidt and A. Rathsfeld from Weierstrass-Institute (WIAS) Berlin. The so-called modified integral method (MIM) is a modification of the IEM of D. Maystre and has been introduced by L. Goray in 1995. It has been improved for weak convergence problems in 2001 and it was the only commercial available integral method for a long time, known as PCGRATE. All referenced integral methods so far are for in-plane diffraction only, no conical diffraction was possible. The first integral method for gratings in conical mounting was developed and proven under very weak conditions by G. Schmidt (WIAS) in 2010. It works for separated interfaces and for inclusions as well as for interpenetrating profiles and for a large number of thin and thick layers in the same stable way. This very fast method has then been implemented for parallel processing under Unix and Windows operating systems. This work gives an overview of the most important BIMs for grating diffraction. It starts by presenting the historical evolution of the methods, highlights their advantages and differences, and gives insight into new approaches and their achievements. It addresses future open challenges at the end.
机译:在光学设计和仿真中,边界积分方程法(BIM)或简单积分方法(IM)是严格的电磁方法,可解决边界(两种材料之间的结构的表面或界面)上的Helmholtz或Maxwell方程用于散射或/和/或衍射的目的。这项工作主要限于用于衍射结构的整体方法,例如光栅,线形,衍射光学元件(DOE),微菲涅耳透镜,计算机生成的全息图(CGH),全息或数字相位全息图,周期性光刻结构等。在大多数情况下,所有提到的结构的直径直径都是数千个波长。因此,数值处理所需的基本方法是局部应用电磁光栅衍射算法。有趣的是,积分方法属于研究光栅衍射的第一种电磁方法。 1960年代中期开始开发具有无限电导率的光栅,这主要是由于积分方法的良好收敛,特别是TM偏振。第一种用于有限电导率的积分方程方法(IEM)是马赛菲涅尔研究所的D.Maystre的方法:1972/74年用于电介质和金属光栅,后来用于多轮廓光栅,其他类型的光栅和光子晶体。与其他方法相比,从1990年代中期到1990年代中期,与金属光栅的BIM相比,微分和模态方法的行为不稳定且收敛缓慢。第一个使用轮廓参数化的光栅BIM是由柏林卡尔·魏斯特拉斯学院(Karl-Weierstrass Institute)在与卡尔·蔡司·耶拿(Carl Zeiss Jena)于1984-1986年与A. Pomp,J。Creutziger和作者签订的合同下开发的。由于参数化,这种方法从一开始就能够处理任何类型的表面光栅:具有边缘的轮廓,悬垂的非功能性轮廓,非常深的轮廓,与波长相比非常大的轮廓或简单的平滑轮廓。高效的网格细化,矩阵预处理,Ewald求和方法以及2006年G的指数收敛求积法大大改进了这种具有三角或样条搭配的积分方法,具有O(N〜2)复杂度的迭代求解器IESMP。柏林Weierstrass-Institute(WIAS)的Schmidt和A. Rathsfeld。所谓的改进积分法(MIM)是D. Maystre的IEM的一种改进,由L. Goray于1995年引入。它在2001年因弱收敛问题而得到改进,它是唯一可商购的积分方法长期以来,被称为PCGRATE。到目前为止,所有参考积分方法仅适用于面内衍射,不可能进行锥形衍射。 G. Schmidt(WIAS)在2010年非常弱的条件下开发并证明了第一个用于圆锥安装的整体光栅方法。该方法适用于分离的界面,夹杂物以及互穿轮廓以及大量的薄壁和厚壁层以相同的稳定方式。然后,已经在Unix和Windows操作系统下实现了这种非常快速的方法来进行并行处理。这项工作概述了最重要的光栅衍射BIM。首先介绍了这些方法的历史演变,着重介绍了它们的优点和差异,并洞悉了新方法及其成就。最后,它解决了未来的公开挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号