首页> 外文会议>Optical pattern recognition XX >Automatic Target Recognition (ATR) Performance Improvement Using integrated Grayscale Optical Correlator and Neural Network
【24h】

Automatic Target Recognition (ATR) Performance Improvement Using integrated Grayscale Optical Correlator and Neural Network

机译:使用集成的灰度光学关联器和神经网络来提高自动目标识别(ATR)性能

获取原文
获取原文并翻译 | 示例

摘要

We have continued to develop the Grayscale Optical Correlator (GOC) system and have explored a variety of automatic target recognition (ATR) applications to take advantage of the inherent performance advantages of the GOC vast parallelism and high-speed. Recently, we have added a neural network (NN) post-processor to greatly decrease the false positive detection rate while retaining the high positive detection rate obtained by the by the GOC.rnIn this paper, we will discuss recent advancements in both the ATR processing algorithm development as well as an innovative breakthrough in designing new GOC hardware system architecture. First, we will briefly overview recent advances in our GOC and NN processor algorithm development. We will then present a new architecture that can lead to the mass production of a new generation of high-performance, low-cost Grayscale Optical Correlator. This new GOC architecture relies on the utilization of the maturing Digital Light Processor (DLP) as both the input and the filter Spatial Light Modulator (SLM). Detailed system description and performance analysis will also be reported.
机译:我们继续开发灰度光学相关器(GOC)系统,并探索了各种自动目标识别(ATR)应用程序,以利用GOC巨大的并行性和高速性的固有性能优势。最近,我们增加了一个神经网络(NN)后处理器,以大大降低误报检测率,同时保持GOC获得的高正检测率。在本文中,我们将讨论这两种ATR处理的最新进展。算法开发以及在设计新的GOC硬件系统体系结构方面的创新突破。首先,我们将简要概述GOC和NN处理器算法开发的最新进展。然后,我们将介绍一种新的体系结构,该体系结构可导致新一代高性能,低成本的灰度光学相关器的批量生产。这种新的GOC架构依赖于成熟的数字光处理器(DLP)作为输入和滤波器空间光调制器(SLM)的利用。还将报告详细的系统描述和性能分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号