首页> 外文会议>Nonlinear Image Processing V >Optimal single stage restoration of split-beam sonar images via mathematical morphology
【24h】

Optimal single stage restoration of split-beam sonar images via mathematical morphology

机译:通过数学形态学优化单束声呐图像的单级恢复

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Split-beam sonar binary images are inherently noisy and have large quantities of shot noise as well as many missing data points. We address the problem of their restoration via mathematical morphology. Conventional restoration techniques for these types of images do not make use of any of the spatial relationships between data points, such as a qualitative observation that outliers tend to have much larger distances to neighboring pixels. We first define an explicit noise model that characterizes the image degradation process for split-beam sonar images. A key feature of the model is that the degradation is split into two parts, a foreground component and a background component. The amount of noise occurring in the background decreases with distance from the underlying signal object. Thus outliers in the model have the same statistical properties as those observed in training data. Next we propose two different restoration algorithms for these kinds of images based respectively on morphological distance transforms and dilation with a toroid shaped structuring element followed by intersection. Finally we generalize to processing other kinds of imagery where applicable. !27
机译:摘要:分束声纳二值图像本质上是嘈杂的,具有大量散粒噪声以及许多丢失的数据点。我们通过数学形态学解决它们的恢复问题。用于这些类型的图像的常规恢复技术没有利用数据点之间的任何空间关系,例如定性观察到异常值倾向于与相邻像素之间的距离要大得多。我们首先定义一个显式噪声模型,该模型描述了分束声纳图像的图像退化过程。该模型的关键特征是将退化分为两个部分,即前景部分和背景部分。在背景中出现的噪声量随与基础信号对象的距离而减小。因此,模型中的异常值具有与训练数据中观察到的相同的统计特性。接下来,我们分别针对形态图像距离变换和使用环形结构元素的扩展以及相交的扩展,针对这些图像提出两种不同的恢复算法。最后,我们在适用时归纳为处理其他种类的图像。 !27

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号