首页> 外文会议>Next-Generation Robotics II; and Machine Intelligence and Bio-inspired Computation: Theory and Applications IX >Evolving Spiking Neural Networks: A novel growth algorithm exhibits unintelligent design
【24h】

Evolving Spiking Neural Networks: A novel growth algorithm exhibits unintelligent design

机译:不断发展的尖刺神经网络:一种新颖的增长算法展现出非智能的设计

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.
机译:尖峰神经网络(SNN)由于其计算特性而被激发出来,这被认为优于传统的冯·诺依曼机器,并且与活泼的大脑共享特性。但是,由于我们缺乏设计方法,因此构建这些系统的进度受到了限制。我们提出了一种基因驱动的网络增长算法,该算法使遗传算法(进化计算)能够生成和测试SNN。该算法的基因组增长O(n),其中n是神经元的数量; n也进化。基因组不仅指定了网络拓扑,而且还指定了其所有参数。实验表明,该算法产生的SNN在给定补品输入的情况下可有效产生鲁棒的尖峰爆发行为,适用于中央模式发生器。即使进化过程不包括输入尖峰序列的扰动,但进化后的网络对这种扰动表现出了显着的鲁棒性。另外,输出尖峰图样保留了输入的特定扰动的证据,网络添加可以利用此功能,如果需要,网络添加可以使用此信息进行精细的决策。在第二项任务,即序列检测器上,发现了一个可以被视为“非智能设计”示例的区分设计;包括了额外的非功能性神经元,尽管效率低下,但不会妨碍其正常功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号