首页> 外文会议>Next generation computer animation techniques >Clothes Size Prediction from Dressed-Human Silhouettes
【24h】

Clothes Size Prediction from Dressed-Human Silhouettes

机译:穿着人体轮廓的衣服尺寸预测

获取原文
获取原文并翻译 | 示例

摘要

We propose an effective and efficient way to automatically predict clothes size for users to buy clothes online. We take human height and dressed-human silhouettes in front and side views as input, and estimate 3D body sizes with a data-driven method. We adopt 20 body sizes which are closely related to clothes size, and use such 3D body sizes to get clothes size by searching corresponding size chart. Previous image-based methods need to calibrate camera to estimate 3D information from 2D images, because the same person has different appearances of silhouettes (e.g. size and shape) when the camera configuration (intrinsic and extrinsic parameters) is different. Our method avoids camera calibration, which is much more convenient. We set up our virtual camera and train the relationship between human height and silhouette size under this camera configuration. After estimating silhouette size, we regress the positions of 2D body landmarks. We define 2D body sizes as the distances between corresponding 2D body landmarks. Finally, we learn the relationship between 2D body sizes and 3D body sizes. The training samples for each regression process come from a database of 3D naked and dressed bodies created by previous work. We evaluate the whole procedure and each process of our framework. We also compare the performance with several regression models. The total time-consumption for clothes size prediction is less than 0.1 s and the average estimation error of body sizes is 0.824 cm, which can satisfy the tolerance for customers to shop clothes online.
机译:我们建议一种有效且有效的方法来自动预测衣服大小,以供用户在线购买衣服。我们将正面和侧面的人体高度和穿着人体的轮廓作为输入,并使用数据驱动的方法估算3D人体尺寸。我们采用与衣服尺寸密切相关的20种身体尺寸,并使用3D身体尺寸通过搜索相应的尺寸表来获得衣服尺寸。以前的基于图像的方法需要校准相机以从2D图像中估计3D信息,因为当相机配置(内部和外部参数)不同时,同一个人的轮廓(例如大小和形状)外观也不同。我们的方法避免了相机校准,这更加方便。我们设置了虚拟摄像头,并在此摄像头配置下训练了人体高度与轮廓尺寸之间的关系。估计轮廓大小后,我们对2D人体界标的位置进行回归。我们将2D人体大小定义为相应2D人体界标之间的距离。最后,我们了解2D人体尺寸和3D人体尺寸之间的关系。每个回归过程的训练样本均来自先前工作创建的3D裸露和穿戴的身体数据库。我们评估框架的整个过程和每个过程。我们还将性能与几种回归模型进行比较。衣服尺寸预测的总耗时小于0.1 s,平均尺码估计误差为0.824 cm,可以满足顾客网上购物的容忍度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号