首页> 外文会议>New applications of nonlinear and chaotic dynamics in mechanics >Wavelet approach to mechanical problems. symplectic group, symplectic topology and symplectic scales
【24h】

Wavelet approach to mechanical problems. symplectic group, symplectic topology and symplectic scales

机译:小波方法解决机械问题。辛群,辛拓扑和辛尺度

获取原文
获取原文并翻译 | 示例

摘要

We present the applications of methods from wavelet analysis to polynomial approximations for a number of nonlinear problems. According to the orbit method and by using approach from the geometric quantization theory we construct the symplectic and Poisson structures associated with generalized wavelets by using metaplectic structure. We consider wavelet approach to the calcuations of Melnikov funtions in the theory of homoclinic chaos in perturbed Hamiltonian systems, for parametrization of Arnold-Weinstein curves in Floer variational approach and characterization of symplectic Hilbert scales of spaces.
机译:我们介绍了从小波分析到多项式逼近的方法对于许多非线性问题的应用。根据轨道方法并使用几何量化理论中的方法,我们使用元辛结构构造了与广义小波相关的辛结构和泊松结构。我们考虑用小波方法计算扰动的哈密顿系统中的同斜向混沌理论中的梅尔尼科夫函数,以便在Floer变分方法中对Arnold-Weinstein曲线进行参数化,并对辛希尔伯特尺度空间进行刻画。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号