首页> 外文会议>Neural Information Processing pt.2; Lecture Notes in Computer Science; 4233 >A Statistical Approach for Learning Invariants: Application to Image Color Correction and Learning Invariants to Illumination
【24h】

A Statistical Approach for Learning Invariants: Application to Image Color Correction and Learning Invariants to Illumination

机译:一种学习不变式的统计方法:应用于图像色彩校正和学习不变式的照明

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new approach for automatic image color correction, based on statistical learning. The method both parameterizes color independently of illumination and corrects color for changes of illumination. The motivation for using a learning approach is to deal with changes of lighting typical of indoor environments such as home and office. The method is based on learning color invariants using a modified multi-layer perceptron (MLP). The MLP is odd-layered. The middle layer includes two neurons which estimate two color invariants and one input neuron which takes in the luminance desired in output of the MLP. The advantage of the modified MLP over a classical MLP is better performance and the estimation of invariants to illumination. The trained modified MLP can be applied using look-up tables (LUTs), yielding very fast processing. Results illustrate the approach.
机译:本文提出了一种基于统计学习的自动图像色彩校正新方法。该方法既可以独立于照明来参数化颜色,也可以针对照明的变化校正颜色。使用学习方法的动机是应对典型的室内环境(例如家庭和办公室)的照明变化。该方法基于使用修改后的多层感知器(MLP)学习颜色不变性的方法。 MLP是奇数层的。中间层包括估计两个颜色不变性的两个神经元和一个吸收MLP输出所需亮度的输入神经元。与传统的MLP相比,修改后的MLP的优势在于具有更好的性能和照明不变性的估计。可以使用查找表(LUT)来应用经过训练的修改后的MLP,从而可以非常快速地进行处理。结果说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号