【24h】

A Suitable Neural Network to Detect Textile Defects

机译:合适的神经网络来检测纺织品缺陷

获取原文
获取原文并翻译 | 示例

摘要

25% of the total revenue earning is achieved from Textile exports for some countries like Bangladesh. It is thus important to produce defect free high quality garment products. Inspection processes done on fabric industries are mostly manual hence time consuming. To reduce error on identifying fabric defects requires automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect detector. A multi-layer neural network is determined that best classifies the specific problems. To feed neural network the digital fabric images taken by a digital camera and converts the RGB images are first converted into binary images by restoration process and local threshold techniques, then three different features are determined for the actual input to the neural network, which are the area of the defects, number of the objects in a image and finally the shape factor. The develop system is able to identify two very commonly defects such as Holes and Scratches and other types of minor defects. The developed system is very suitable for Least Developed Countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time.
机译:在一些国家(例如孟加拉国),纺织品出口实现了总收入的25%。因此,生产无缺陷的高质量服装产品很重要。在织物工业上完成的检查过程大部分是人工的,因此很费时间。为了减少识别织物缺陷的错误,需要进行自动且准确的检查过程。考虑到这一点,本研究实现了纺织品缺陷检测器。确定了一个多层神经网络,可以最好地对特定问题进行分类。为了向神经网络馈送数字相机拍摄的数字织物图像并转换RGB图像,首先通过恢复过程和局部阈值技术将其转换为二进制图像,然后为神经网络的实际输入确定三个不同的特征,即缺陷的面积,图像中的对象数量以及最终的形状因子。显影系统能够识别两种非常常见的缺陷,例如孔和划痕以及其他类型的次要缺陷。该开发的系统非常适合最不发达国家,可以在经济的成本内识别出织物缺陷,并且可以实时生成较少的易出错检查系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号