首页> 外文会议>Neural Information Processing pt.2; Lecture Notes in Computer Science; 4233 >Training RBF Neural Networks with PSO and Improved Subtractive Clustering Algorithms
【24h】

Training RBF Neural Networks with PSO and Improved Subtractive Clustering Algorithms

机译:用PSO和改进的减法聚类算法训练RBF神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, Particle Swarm Optimization (PSO) and improved subtractive clustering algorithm were proposed for training RBF neural networks. PSO was used to feature selection in conjunction with RBF classifiers for individual fitness evaluation. During RBF training process, supervised mean subtractive clustering algorithm (SMSCA) was used to evolve RBF networks dynamically with the selected feature subset based on PSO algorithm. Experimental results on four datasets show that RBF networks evolved by our proposed algorithm have more simple architecture and stronger generalization ability with nearly the same classification performance when compared with the networks evolved by other methods.
机译:本文提出了粒子群算法(PSO)和改进的减法聚类算法来训练RBF神经网络。 PSO与RBF分类器一起用于特征选择,以进行个体适应性评估。在RBF训练过程中,使用监督平均减法聚类算法(SMSCA)与基于PSO算法的选定特征子集一起动态演化RBF网络。在四个数据集上的实验结果表明,与其他方法进化的网络相比,我们提出的算法进化的RBF网络具有更简单的架构和更强的泛化能力,并且具有几乎相同的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号