首页> 外文会议>Network and parallel computing >A Layered Detection Method for Malware Identification
【24h】

A Layered Detection Method for Malware Identification

机译:恶意软件识别的分层检测方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, millions of new malicious programs are produced by Pa mature industry of malware production. These programs have tremendous challenges on the signature-based anti-virus products and pose great threats on network and information security. Machine learning techniques are applicable for detecting unknown malicious programs without knowing their signatures. In this paper, a Layered Detection (LD) method is developed to detect malwares with a two-layer framework. The Low-Level-Classifiers (LLC) are employed to identify whether the programs perform any malicious functions according to the API-calls of the programs. The Up-level-Classifier (ULC) is applied to detect malwares according to the low level function identification. The LD method is compared with many classical classification algorithms with comprehensive test datasets containing 16135 malwares and 1800 benign programs. The experiments demonstrate that the LD method outperforms other algorithms in terms of detection accuracy.
机译:近年来,Pa成熟的恶意软件生产行业产生了数百万个新的恶意程序。这些程序对基于签名的防病毒产品提出了巨大挑战,并对网络和信息安全构成了巨大威胁。机器学习技术适用于检测未知恶意程序而无需知道它们的签名。在本文中,开发了一种分层检测(LD)方法以使用两层框架检测恶意软件。低级分类器(LLC)用于根据程序的API调用来识别程序是否执行任何恶意功能。上级分类器(ULC)用于根据低级功能标识检测恶意软件。 LD方法与许多经典分类算法进行了比较,后者具有包含16135个恶意软件和1800个良性程序的综合测试数据集。实验表明,在检测精度方面,LD方法优于其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号