【24h】

A Markov Game Theoretic Data Fusion Approach for Cyber Situational Awareness

机译:一种用于网络态势感知的马尔可夫博弈论数据融合方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an innovative data-fusion/ data-mining game theoretic situation awareness and impact assessment approach for cyber network defense. Alerts generated by Intrusion Detection Sensors (IDSs) or Intrusion Prevention Sensors (IPSs) are fed into the data refinement (Level 0) and object assessment (L1) data fusion components. High-level situation/threat assessment (L2/L3) data fusion based on Markov game model and Hierarchical Entity Aggregation (HEA) are proposed to refine the primitive prediction generated by adaptive feature/pattern recognition and capture new unknown features. A Markov (Stochastic) game method is used to estimate the belief of each possible cyber attack pattern. Game theory captures the nature of cyber conflicts: determination of the attacking-force strategies is tightly coupled to determination of the defense-force strategies and vice versa. Also, Markov game theory deals with uncertainty and incompleteness of available information. A software tool is developed to demonstrate the performance of the high level information fusion for cyber network defense situation and a simulation example shows the enhanced understating of cyber-network defense.
机译:本文提出了一种创新的数据融合/数据挖掘游戏理论态势感知和影响评估方法,用于网络防御。由入侵检测传感器(IDS)或入侵防御传感器(IPS)生成的警报被馈送到数据细化(级别0)和对象评估(L1)数据融合组件中。提出了基于马尔可夫博弈模型和层次实体聚合(HEA)的高级态势/威胁评估(L2 / L3)数据融合,以细化自适应特征/模式识别生成的原始预测并捕获新的未知特征。马尔可夫(随机)博弈方法用于估计每个可能的网络攻击模式的可信度。博弈论抓住了网络冲突的本质:攻击力策略的确定与防御力策略的确定紧密相关,反之亦然。此外,马尔可夫博弈论处理可用信息的不确定性和不完整性。开发了一种软件工具来演示高级信息融合在网络网络防御情况下的性能,并通过一个仿真示例说明了网络网络防御的低估状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号