首页> 外文会议>Modeling decisions for artificial intelligence >A Novel and Effective Approach to Shape Analysis: Nonparametric Representation, De-noising and Change-Point Detection, Based on Singular-Spectrum Analysis
【24h】

A Novel and Effective Approach to Shape Analysis: Nonparametric Representation, De-noising and Change-Point Detection, Based on Singular-Spectrum Analysis

机译:一种新颖有效的形状分析方法:基于奇异谱分析的非参数表示,去噪和变化点检测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes new very effective methods for building nonparametric, multi-resolution models of 2D closed contours, based on Singular Spectrum Analysis (SSA). Representation, de-noising and change-point detection to automate the landmark selection are simultaneously addressed in three different settings. The basic one is to apply SSA to a shape signature encoded by sampling a real-valued time series from a radius-vector contour function. However, this is only suited for star-shaped contours. A second setting is to generalize SSA so as to apply to a complex-valued trajectory matrix in order to directly represent the contour as a time series path in the complex plan, along with detecting change-points in a complex-valued time series. A third setting is to consider the pairs (x, y) of coordinates as a co movement of two real-valued time series and to apply SSA to a trajectory matrix defined in such a way to span both of them.
机译:本文提出了一种新的非常有效的方法,用于基于奇异频谱分析(SSA)的二维封闭轮廓的非参数,多分辨率模型。在三个不同的设置中同时解决了自动进行界标选择的表示,去噪和变化点检测问题。基本的方法是将SSA应用于通过从半径矢量轮廓函数采样实值时间序列而编码的形状签名。但是,这仅适用于星形轮廓。第二种设置是概括SSA,以便将其应用于复数值轨迹矩阵,以便将轮廓直接表示为复杂计划中的时间序列路径,同时检测复数值时间序列中的变化点。第三种设置是将坐标对(x,y)视为两个实值时间序列的共同运动,并将SSA应用于以这样一种方式定义的轨迹矩阵以跨越它们两个。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号