首页> 外文会议>Modeling decisions for artificial intelligence >Privacy-Preserving Similarity Evaluation and Application to Remote Biometrics Authentication
【24h】

Privacy-Preserving Similarity Evaluation and Application to Remote Biometrics Authentication

机译:隐私保护相似性评估及其在远程生物特征认证中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new method for secure remote biometric authentication preventing the vulnerability of compromised biometrics is presented. The idea is based on a public-key cryptographical protocol, referred as Zero-knowledge Proof, which allows a user to prove that she has surely a valid biometric data without revealing the data. Hence, the scheme is free from the risk of disclosure of biometric data. Even if a malicious administrator has a privilege access to the private database, it is infeasible for him to learn the private template. This paper studies two well-known definitions, the cosine correlation and the Euclidean distance as similarities of given two feature vectors. Both similarities are denned with some multiplications and additions, which can be performed in privacy-preserving way because of the useful property of public-key commitment scheme, additive homomorphism. The estimation based on the experimental implementation shows that the private Euclidean distance scheme archives better accuracy in terms of false acceptance and rejection than the private cosine coloration scheme, but it requires about 5/2ne overhead to evaluate n-dimension feature vectors consisting of e-bit integers.
机译:本文提出了一种新的安全远程生物特征认证方法,可以防止受到破坏的生物特征的脆弱性。这个想法基于称为零知识证明的公钥密码协议,该协议允许用户证明她确实具有有效的生物统计数据而不会泄露该数据。因此,该方案没有生物数据公开风险。即使恶意管理员具有对私有数据库的特权访问权,对于他来说学习私有模板也是不可行的。本文研究了两个众所周知的定义,即余弦相关性和欧几里得距离作为给定两个特征向量的相似性。两种相似性都通过一些乘法和加法来定义,这是由于公钥承诺方案的有用性质,加法同构性而可以以隐私保护的方式执行。根据实验实现方案进行的估算表明,相对于私有余弦着色方案,私有欧几里德距离方案在错误接受和拒绝方面的归档精度更高,但是评估由e-组成的n维特征向量需要大约5 / 2ne的开销。位整数。

著录项

  • 来源
  • 会议地点 Sabadell(ES);Sabadell(ES)
  • 作者单位

    Department of Communication and Network Engineering, School of Information and Telecommunication Engineering, Tokai university 1117 Kitakaname, Hiratsuka, Kangawa, 259-1292, Japan;

    Department of Communication and Network Engineering, School of Information and Telecommunication Engineering, Tokai university 1117 Kitakaname, Hiratsuka, Kangawa, 259-1292, Japan;

    Graduate School of Innovation Management, Tokyo Institute of Technology, Tokyo, Japan;

    Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号