【24h】

Texture image recognition based on modified probabilistic neural network

机译:基于改进概率神经网络的纹理图像识别

获取原文
获取原文并翻译 | 示例

摘要

Differential Evolution (DE) method is introduced in this paper to make up the insufficiency of basic probabilistic neural network. Consequently, a new texture image recognition method based on Modified Probabilistic Neural Network (MPNN) is proposed. At first, tree structure wavelet packet transformation is used to extract the energy characteristic, and statistical method is used to extract the statistical mean value, average energy, standard deviation, and mean residual characteristics for obtaining the feature vector; then the feature vector of texture image is trained by the MPNN, thus the texture image is identified. The experiment result indicates that, compared to the BP neural network, RBF neural network, and the basic probabilistic neural network, the modified probabilistic neural network has higher accuracy and faster convergence speed.
机译:本文介绍了差分演化(DE)方法,以弥补基本概率神经网络的不足。因此,提出了一种基于改进概率神经网络(MPNN)的纹理图像识别新方法。首先,利用树结构小波包变换提取能量特征,采用统计方法提取统计平均值,平均能量,标准差和均值残差特征,得到特征向量。然后由MPNN训练纹理图像的特征向量,从而识别出纹理图像。实验结果表明,与BP神经网络,RBF神经网络和基本概率神经网络相比,改进的概率神经网络具有更高的精度和更快的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号