首页> 外文会议>Microwave Remote Sensing of the Atmosphere and Environment >Evaluation of JERS-1/SAR data for vegetation types in arid regions
【24h】

Evaluation of JERS-1/SAR data for vegetation types in arid regions

机译:干旱地区植被类型的JERS-1 / SAR数据评估

获取原文
获取原文并翻译 | 示例

摘要

Abstract: The purpose of this paper is to evaluate JERS-1/SAR data for determining vegetation types in arid regions. First, a noise speckle filter was applied to the original JERS-1/SAR image data using a Map Filter with an adaptive 7*7 window. Second, a small part of the study area was extracted for the full scene image for further analysis. The NRCS values of each extracted image data were computed with the known Calibration Factor for the NASDA supplied JERS-1/SAR data. Each image was assigned to one of the three categories with two selected threshold levels. These two threshold levels can be obtained by Otsu's Automatic threshold selection method.In order to generate color composite images, multi- temporal SAR images were registered with the JERS-1/OPS image using a second-order polynomial function. The accuracy of registration was within 0.5 pixel RMS error. Following this color composite an image based on above three scenes was generated to identify the training samples. Finally, the color composite image was evaluated for vegetation type discrimination in the study area. A test site along the Tarim River in the Tarim Basin, China, was selected for this purpose. !8
机译:摘要:本文旨在评估JERS-1 / SAR数据以确定干旱地区的植被类型。首先,使用具有自适应7 * 7窗口的Map Filter将噪声斑点滤波器应用于原始JERS-1 / SAR图像数据。其次,提取研究区域的一小部分以获取整个场景图像,以供进一步分析。对于NASDA提供的JERS-1 / SAR数据,使用已知的校准因子计算每个提取图像数据的NRCS值。每个图像被分配到具有两个选定阈值级别的三个类别之一。这两个阈值级别可以通过Otsu的自动阈值选择方法获得。为了生成彩色合成图像,使用二阶多项式函数将多时态SAR图像与JERS-1 / OPS图像配准。套准的精度在0.5像素RMS误差以内。进行这种颜色合成后,将基于上述三个场景生成图像以识别训练样本。最后,对彩色复合图像进行了研究区域植被类型识别的评估。为此,选择了中国塔里木盆地塔里木河沿岸的一个试验场。 !8

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号