首页> 外文会议>International Joint Conference on Neural Networks >Context encoder self-supervised approaches for eye fundus analysis
【24h】

Context encoder self-supervised approaches for eye fundus analysis

机译:用于眼底分析的上下文编码器自监督方法

获取原文

摘要

The broad availability of medical images in current clinical practice provides a source of large image datasets. In order to use these datasets for training deep neural networks in detection and segmentation tools, it is necessary to provide pixel-wise annotations associated to each image. However, the image annotation is a tedious, time consuming and error prone process that requires the participation of experienced specialists. In this work, we propose different complementary context encoder self-supervised approaches to learn relevant characteristics for the restricted medical imaging domain of retinographies. In particular, we propose a patch-wise approach, inspired in the previous proposal of broad domain context encoders, and complementary fully convolutional approaches. These approaches take advantage of the restricted application domain to learn the relevant features of the eye fundus, situation that can be extrapolated to many medical imaging issues. Different representative experiments were conducted in order to evaluate the performance of the trained models, demonstrating the suitability of the proposed approaches in the understanding of the eye fundus characteristics. The proposed self-supervised models can serve as reference to support other domain-related issues through transfer or multi-task learning paradigms, like the detection and evaluation of the retinal structures or anomaly detections in the context of pathological analysis.
机译:医学图像在当前临床实践中的广泛可用性提供了大型图像数据集的来源。为了使用这些数据集在检测和分割工具中训练深度神经网络,有必要提供与每个图像相关的像素级注释。然而,图像注释是一个繁琐、耗时且容易出错的过程,需要有经验的专家参与。在这项工作中,我们提出了不同的互补上下文编码器自监督方法来学习视网膜图像的受限医学成像领域的相关特征。特别是,我们提出了一种基于补丁的方法(灵感来源于之前提出的广域上下文编码器)和互补的完全卷积方法。这些方法利用有限的应用领域来了解眼底的相关特征,这种情况可以推断为许多医学成像问题。为了评估训练模型的性能,进行了不同的代表性实验,证明了所提出的方法在理解眼底特征方面的适用性。所提出的自监督模型可以作为参考,通过迁移或多任务学习范式支持其他领域相关问题,例如在病理分析的背景下检测和评估视网膜结构或异常检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号