首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >FLAME EDGE DYNAMICS AND INTERACTION IN A MULTI-NOZZLE CAN COMBUSTOR WITH FUEL STAGING
【24h】

FLAME EDGE DYNAMICS AND INTERACTION IN A MULTI-NOZZLE CAN COMBUSTOR WITH FUEL STAGING

机译:多喷嘴中的火焰边缘动力学和相互作用可以用燃料分期燃烧

获取原文

摘要

The characterization and mitigation of thermoacoustic combustion instabilities in gas turbine engines is necessary to reduce pollutant emissions, premature wear, and component failure associated with unstable flames. Fuel staging, a technique in which the fuel flow to a multi-nozzle combustor is unevenly distributed between the nozzles, has been shown to mitigate the intensity of self-excited combustion instabilities in multiple nozzle combustors. In our previous work, we hypothesized that staging suppresses instability through a phase-cancellation effect in which the heat release rate from the staged nozzle oscillates out of phase with that of the other nozzles, leading to destructive interference that suppresses the instability. This previous theory, however, was based on chemiluminescence imaging, which is a line-of-sight integrated technique. In this work, we use high-speed laser-induced fluorescence to further investigate instability suppression in two staging configurations: center-nozzle and outer-nozzle staging. An edge-tracking algorithm is used to compute local flame edge displacement as a function of time, allowing instability-driven edge oscillation phase coherence and other instantaneous flame dynamics to be spectrally and spatially resolved. Analysis of flame edge oscillations shows the presence of convecting coherent fluctuations of the flame edge caused by periodic vortex shedding. When the system is unstable, these two flame edges oscillate together as a result of high-intensity longitudinal-mode acoustic oscillations in the combustor that drive periodic vortex shedding at each of the nozzle exits. In the stable cases, however, the phase between the oscillations of the center and outer flame edges is greater than 90 degrees (~114 degrees), suggesting that the phase-cancellation hypothesis may be valid. This analysis allows a better understanding of the instantaneous flame dynamics behind flame edge oscillation phase offset and fuel staging-based instability suppression.
机译:热声燃烧不稳定性的燃气涡轮发动机中的表征和减轻需要减少污染物排放,过早磨损以及与不稳定火焰相关联的组件故障。燃料分级,其中,所述燃料流量的多喷嘴燃烧器不均匀喷嘴之间分布的技术,已经显示出,以减轻多喷嘴燃烧器自激燃烧不稳定性的强度。在我们以前的工作中,我们假设,分期禁止显示不稳定穿过一个相抵消的效果,其中从热释放速率上演喷嘴振荡出与其它喷嘴的阶段,从而抑制不稳定破坏性干扰。这个先前的理论,然而,基于化学发光成像,这是一个线的视线集成技术。在这项工作中,我们使用高速激光诱导的荧光,以进一步调查以两种分段的配置不稳定性抑制:中心喷嘴和外喷嘴分期。边缘跟踪算法被用于计算局部火焰边缘位移作为时间的函数,允许不稳定性驱动的边缘振荡相位相干性和其他的瞬时火焰动态是光谱和空间分辨。的火焰边缘振荡显示分析对流引起的周期涡旋脱落火焰边缘的相干波动的存在。当系统不稳定时,这两个火焰边缘摆动一起在燃烧器驱动周期涡流在每个喷嘴出口的脱落的高强度纵模声振荡的结果。在稳定的情况下,但是,中心和外边缘火焰的振荡之间的相位是大于90度(〜114度),这表明相抵消假设可能是有效的。该分析允许后面火焰边缘振荡相位偏移和基于分段燃料不稳定性抑制瞬时火焰动态的更好的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号