首页> 外文会议>ASME Turbo Expo: Turbomachinery Technical Conference and Exposition >FLAME EDGE DYNAMICS AND INTERACTION IN A MULTI-NOZZLE CAN COMBUSTOR WITH FUEL STAGING
【24h】

FLAME EDGE DYNAMICS AND INTERACTION IN A MULTI-NOZZLE CAN COMBUSTOR WITH FUEL STAGING

机译:带有燃料滞留的多喷嘴罐式燃烧器的火焰边缘动力学和相互作用

获取原文

摘要

The characterization and mitigation of thermoacoustic combustion instabilities in gas turbine engines is necessary to reduce pollutant emissions, premature wear, and component failure associated with unstable flames. Fuel staging, a technique in which the fuel flow to a multi-nozzle combustor is unevenly distributed between the nozzles, has been shown to mitigate the intensity of self-excited combustion instabilities in multiple nozzle combustors. In our previous work, we hypothesized that staging suppresses instability through a phase-cancellation effect in which the heat release rate from the staged nozzle oscillates out of phase with that of the other nozzles, leading to destructive interference that suppresses the instability. This previous theory, however, was based on chemiluminescence imaging, which is a line-of-sight integrated technique. In this work, we use high-speed laser-induced fluorescence to further investigate instability suppression in two staging configurations: center-nozzle and outer-nozzle staging. An edge-tracking algorithm is used to compute local flame edge displacement as a function of time, allowing instability-driven edge oscillation phase coherence and other instantaneous flame dynamics to be spectrally and spatially resolved. Analysis of flame edge oscillations shows the presence of convecting coherent fluctuations of the flame edge caused by periodic vortex shedding. When the system is unstable, these two flame edges oscillate together as a result of high-intensity longitudinal-mode acoustic oscillations in the combustor that drive periodic vortex shedding at each of the nozzle exits. In the stable cases, however, the phase between the oscillations of the center and outer flame edges is greater than 90 degrees (~114 degrees), suggesting that the phase-cancellation hypothesis may be valid. This analysis allows a better understanding of the instantaneous flame dynamics behind flame edge oscillation phase offset and fuel staging-based instability suppression.
机译:表征和缓解燃气涡轮发动机中的热声燃烧不稳定性,对于减少污染物排放,过早磨损以及与不稳定火焰相关的组件故障是必要的。已经显示了燃料分级,其中流到多喷嘴燃烧器的燃料在喷嘴之间不均匀地分布的技术减轻了在多个喷嘴燃烧器中的自激燃烧不稳定性的强度。在我们以前的工作中,我们假设分级通过相抵消效应来抑制不稳定性,在该相抵消效应中,分段式喷嘴的放热速率与其他喷嘴的热释放速率异相振荡,从而导致破坏性干扰,从而抑制了不稳定。但是,以前的理论是基于化学发光成像的,这是一种视线集成技术。在这项工作中,我们使用高速激光诱导的荧光进一步研究了两个阶段配置中的不稳定性抑制:中心喷嘴阶段和外部喷嘴阶段。边缘跟踪算法用于计算随时间变化的局部火焰边缘位移,从而可以在光谱和空间上解析不稳定驱动的边缘振荡相位相干性和其他瞬时火焰动力学。火焰边缘振荡的分析表明存在周期性对流旋涡引起的对流相干波动。当系统不稳定时,这两个火焰边缘会由于燃烧器中的高强度纵向模式声振荡而一起振荡,该振荡会驱动每个喷嘴出口处的周期性涡旋脱落。但是,在稳定的情况下,中心火焰边缘与外部火焰边缘的振荡之间的相位大于90度(〜114度),这表明相消假设可能是有效的。这种分析可以更好地理解火焰边缘振荡相位偏移和基于燃料分级的不稳定性抑制之后的瞬时火焰动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号